|
|
Analysis of Operating Characteristics of Dual-Switch Boost Converter Considering Parasitic Parameters under High Frequency Conditions |
Guo Yingjun1,2, Kong Dekai1,3, Tang Yu1,3, Sun Hexu1,2, Dong Yan1,3 |
1. State Key Laboratory of Reliability and Intelligence of Electrical Equipment Hebei University of Technology Tianjin 300130 China; 2. School of Electrical Engineering Hebei University of Science and Technology Shijiazhuang 050018 China; 3. Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province Hebei University of Technology Tianjin 300130 China |
|
|
Abstract Compared with the traditional Boost converter, the dual-switch Boost converter can obtain higher gain, effectively reduce the voltage/current stress of the switching tube, and can be used as an interface converter for photovoltaic systems and fuel cell systems. In order to improve the power density of the power conversion system, it is necessary to further increase the switching frequency. However, parasitic parameters that can be ignored in circuit analysis at low switching frequency will have an important impact on the gain and device stress of the high frequency converter. It is difficult to evaluate the influence of parasitic parameters on the performance of the dual-switch Boost converter at high frequency by the current analysis methods. Therefore, this paper establishes a model of dual-switch Boost converter considering parasitic parameters at high frequency, puts forward the sneak circuit modes considering parasitic parameters according to the sneak circuit analysis method, and analyzes the influence of parasitic parameters on the gain of dual-switch Boost converters, voltage/current stress of power devices, converter loss and efficiency at high frequency. Finally, an experimental platform of the dual-switch Boost converter is established in the laboratory to verify the circuit performance at high frequency.
|
Received: 23 January 2021
|
|
|
|
|
[1] Li Min, Zhang Bo, Qiu Dongyuan.Sneak circuit analysis for a DCM fly-back DC-DC converter considering parasitic parameters[C]//2016 IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE), Hefei, China, 2016: 22-26. [2] Zhang Bo, Qiu Dongyuan.Sneak circuits in power converters: concept, principle and application[J]. CPSS Transactions on Power Electronics and Appli-cations, 2017, 2(1): 68-75. [3] 肖龙, 伍梁, 李新, 等. 高频LLC变换器平面磁集成矩阵变压器的优化设计[J]. 电工技术学报, 2020, 35(4): 758-766. Xiao Long, Wu Liang, Li Xin, et al.Optimal design of planar magnetic integrated matrix transformer for high frequency LLC converter[J]. Transactions of China Electrotechnical Society, 2020, 35(4): 758-766. [4] 倪瑞政, 李庭, 陈杰, 等. 一种脉冲式死区补偿方法的研究[J]. 电工技术学报, 2019, 34(2): 553-559. Ni Ruizheng, Li Ting, Chen Jie, et al.Research on a pulse dead zone compensation method[J]. Transa-ctions of China Electrotechnical Society, 2019, 34(2): 553-559. [5] Liu Hongchen, Li Fei.Novel high step-up DC-DC converter with active coupled-inductor network for a sustainable energy system[J]. IEEE Transactions on Power Electronics, 2015, 30(12): 6476-6482. [6] 王萍, 陈博, 王议锋, 等. 一种多谐振隔离双向DC-DC变换器[J]. 电工技术学报, 2019, 34(8): 1667-1676. Wang Ping, Chen Bo, Wang Yifeng, et al.A multi resonant bidirectional DC-DC converter[J]. Transa-ctions of China Electrotechnical Society, 2019, 34(8): 1667-1676. [7] Gutsmann B, Mourick P, Silber D.Exact inductive parasitic extraction for analysis of IGBT parallel switching including DCB-backside eddy currents[C]// 2000 IEEE 31st Annual Power Electronics Specialists Conference (Cat. No.00CH37018), Galway, Ireland, 2000: 1291-1295. [8] Chen Zheng, Boroyevich D, Burgos R.Experimental parametric study of the parasitic inductance influence on MOSFET switching characteristics[C]//The 2010 International Power Electronics Conference (ECCE Asia), Sapporo, Japan, 2010: 164-169. [9] 熊飞, 张军明, 钱照明. 寄生参数对有源功率因数校正器电流畸变的影响[J]. 中国电机工程学报, 2010, 30(21): 40-47. Xiong Fei, Zhang Junming, Qian Zhaoming.Effect of parasitic parameters on current distortion of Boost PFC circuit[J]. Proceedings of the CSEE, 2010, 30(21): 40-47. [10] Li Min, Zhang Bo, Qiu Dongyuan, et al.Sneak circuit phenomena in a DCM Boost converter considering parasitic parameters[J]. IEEE Transactions on Power Electronics, 2017, 32(5): 3946-3958. [11] 刘佳斌, 肖曦, 梅红伟. 基于GaN-HEMT器件的双有源桥DC-DC变换器的软开关分析[J]. 电工技术学报, 2019, 34(2): 534-542. Liu Jiabin, Xiao Xi, Mei Hongwei.Soft switching analysis of dual active bridge DC-DC converter based on GaN-HEMT device[J]. Transactions of China Electrotechnical Society, 2019, 34(2): 534-542. [12] 林雪凤, 许建平, 周翔. 谐振软开关耦合电感高增益DC-DC变换器[J]. 电工技术学报, 2019, 34(4): 747-755. Lin Xuefeng, Xu Jianping, Zhou Xiang.Soft-switched high step-up DC-DC converter with coupled inductor of resonance[J]. Transactions of China Elec-trotechnical Society, 2019, 34(4): 747-755. [13] 赵朝阳, 卢伟国, 胡志凌, 等. 耦合电感序列切换的快速卸载瞬态响应Buck变换器[J]. 电工技术学报, 2020, 35(1): 28-36. Zhao Zhaoyang, Lu Weiguo, Hu Zhiling, et al.Fast unloading transient response Buck converter using coupled inductor based on sequence switching control[J]. Transactions of China Electrotechnical Society, 2020, 35(1): 28-36. [14] 刘东明, 李学宝, 顼佳宇, 等. 高压SiC器件封装用有机硅弹性体高温宽频介电特性分析[J]. 电工技术学报, 2021, 36(12): 2548-2559. Liu Dongming, Li Xuebao, Xu Jiayu, et al.Analysis of high temperature broadband dielectric properties of silicone elastomer for high voltage SiC device packaging[J]. Transactions of China Electrotechnical Society, 2021, 36(12): 2548-2559. [15] 黄华震, 仝涵, 王宁燕, 等. 考虑寄生振荡的IGBT分段暂态模型对电磁干扰预测的影响分析[J]. 电工技术学报, 2021, 36(12): 2434-2445. Huang Huazhen, Tong Han, Wang Ningyan, et al.Analysis of the influence of IGBT subsection transient model considering parasitic oscillation on EMI prediction[J]. Transactions of China Electro-technical Society, 2021, 36(12): 2434-2445. [16] 薄强, 王丽芳, 张玉旺, 等. 应用于无线充电系统的SiC MOSFET关断特性分析[J]. 电力系统自动化, 2021, 45(15): 150-157. Bo Qiang, Wang Lifang, Zhang Yuwang, et al.Analysis of turn-off characteristics of SiC MOSFET applied to wireless charging systems[J]. Automation of Electric Power Systems, 2021, 45(15): 150-157. [17] 王志远, 高湛军, 张健磊, 等. 考虑短路及短线故障的有源配电网保护[J]. 电力系统自动化, 2021, 45(12): 133-141. Wang Zhiyuan, Gao Zhanjun, Zhang Jianlei, et al.Protection of active distribution betwork considering short-circuit and broken-line faults[J]. Automation of Elec-tric Power Systems, 2021, 45(12): 133-141. [18] He Mingjie, Li Weiye, Peng Jun, et al.Multi-layer quasi three-dimensional equivalent model of axial-flux permanent magnet synchronous machine[J]. CES Transactions on Electrical Machines and Systems, 2021, 5(1): 3-12. [19] Sun Tongze, Liu Xiping, Zou Yongling, et al.Design and optimization of a mechanical variable-leakage-flux interior permanent magnet machine with auxiliary rotatable magnetic poles[J]. CES Transa-ctions on Electrical Machines and Systems, 2021, 5(1): 21-29. |
|
|
|