|
|
Review on Active Thermal Control Methods Based on Junction Temperature Swing Smooth Control of IGBTs |
Wei Yunhai, Chen Minyou, Lai Wei, Zhang Jinbao, Hu Yulong |
State Key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing University Chongqing 400044 China |
|
|
Abstract Served as core devices in power converters, IGBT devices are used in electric vehicles, rail transit, aerospace, and power systems. However, the junction temperature of IGBT devices swings dramatically due to the harsh operating environment. Hence, under the continuous impact of thermal stress, IGBT devices suffer degradations, which affects the reliability of system operation. At present, domestic and foreign scholars have carried out a lot of research work regarding internal thermal management to extend the operating lifetime. Simultaneously, various active thermal management methods have also been proposed, which are of great significance to delay the aging rate of power devices and improve the reliability of systems. Firstly, this paper clarifies and summarizes the principles and characteristics of the existing methods of active thermal control for IGBTs from the perspective of device level and the system level respectively. Secondly, the effects of the active thermal control methods based on the lifetime evaluation model of IGBTs are evaluated quantitatively. Finally, these methods are comprehensively compared and analyzed from the mitigated degree of the thermal stress, the difficulty of realization, the degree of the lifetime extension and the scope of the application. And the exploration direction of the active thermal control for IGBT devices is prospected, which provides a meaningful reference for the health management of IGBT devices.
|
Received: 27 January 2021
|
|
|
|
|
[1] 贾英杰, 肖飞, 罗毅飞, 等. 基于场路耦合的大功率IGBT多速率电热联合仿真方法[J]. 电工技术学报, 2020, 35(9): 1952-1961. Jia Yingjie, Xiao Fei, Luo Yifei, et al.Multi-rate electro-thermal simulation method for high power IGBT based on field-circuit coupling[J]. Transactions of China Electrotechnical Society, 2020, 35(9): 1952-1961. [2] 刘国友, 罗海辉, 张鸿鑫, 等. 基于全铜工艺的750A/6500V高性能IGBT模块[J]. 电工技术学报, 2020, 35(21): 4501-4510. Liu Guoyou, Luo Haihui, Zhang Hongxin, et al.High performance 750A/6500V IGBT module based on full-copper processes[J]. Transactions of China Electrotechnical Society, 2020, 35(21): 4501-4510. [3] 王莉娜, 邓洁, 杨军一, 等. Si和SiC功率器件结温提取技术现状及展望[J]. 电工技术学报, 2019, 34(4): 703-716. Wang Lina, Deng Jie, Yang Junyi, et al.Junction temperature extraction methods for Si and SiC power devices-a review and possible alternatives[J]. Transactions of China Electrotechnical Society, 2019, 34(4): 703-716. [4] 张军, 张犁, 成瑜. IGBT模块寿命评估研究综述[J].电工技术学报, 2021, 36(12): 2560-2575. Zhang Jun, Zhang Li, Cheng Yu.Review of the lifetime evaluation for the IGBT module[J]. Transactions of China Electrotechnical Society, 2021, 36(12): 2560-2575. [5] Desingu K, Selvaraj R, Chelliah T R.Control of reactive power for stabilized junction temperature in power electronic devices serving to a 250MW asynchronous hydrogenerating unit[J]. IEEE Transactions on Industry Applications, 2019, 55(99): 7584-7867. [6] Ciappa M.Selected failure mechanisms of modern power modules[J]. Microelectronics Reliability, 2002, 42(4-5): 653-667. [7] 王学梅, 张波, 吴海平. 基于失效物理的功率器件疲劳失效机理[J]. 电工技术学报, 2019, 34(4): 717-727. Wang Xuemei, Zhang Bo, Wu Haiping.A review of fatigue mechanism of power devices based on physics-of-failure[J]. Transactions of China Electrotechnical Society, 2019, 34(4): 717-727. [8] Wintrich A, Nicolai U, Tursky W, et al.Application manual power semiconductors[M]. Nuremberg: SEMIKRON International, 2011. [9] Wang Xiang, Castellazzi A, Zanchetta P.Regulated cooling for reduced thermal cycling of power devices[C]//7th International Power Electronics and Motion Control Conference, Harbin, 2012: 238-244. [10] 吴军科. 非平稳工况变流器IGBT模块结温平滑控制研究[D]. 重庆: 重庆大学, 2015. [11] Murdock D A, Torres J E R, Connors J J, et al. Active thermal control of power electronic modules[J]. IEEE Transactions on Industry Applications, 2006, 42(2): 552-558. [12] 罗旭, 王学梅, 吴海平. 基于多目标优化的电动汽车变流器IGBT及开关频率的选择[J]. 电工技术学报, 2020, 35(10): 2181-2193. Luo Xu, Wang Xuemei, Wu Haiping.Selections of IGBTs and switching frequency of the electric vehicle converter based on multi-objective optimization[J]. Transactions of China Electrotechnical Society, 2020, 35(10): 2181-2193. [13] Wu Junke, Zhou Luowei, Sun Pengju, et al.Control of IGBT junction temperature in small-scale wind power converter[C]//2014 International Power Electronics and Application Conference and Exposition, Shanghai, 2014: 41-48. [14] Wei Lixiang, McGuire J, Lukaszewski R A. Analysis of PWM frequency control to improve the lifetime of PWM inverter[J]. IEEE Transactions on Industry Applications, 2011, 47(2): 922-929. [15] Lemmens J, Vanassche P, Driesen J.Optimal control of traction motor drives under electrothermal constraints[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2014, 2(2): 249-263. [16] Falck J, Andresen M, Liserre M.Active thermal control of IGBT power electronic converters[C]// IECON 2015-41st Annual Conference of the IEEE Industrial Electronics Society, Yokohama, 2016: 1-6. [17] Hofer P, Karrer N, Gerster C.Paralleling intelligent IGBT power modules with active gate-controlled current balancing[C]//27th Annual IEEE Power Electronics Specialists Conference, Baveno, 2002: 1312-1316. [18] Wu Liang, Castellazzi A.Temperature adaptive driving of power semiconductor devices[C]//2010 IEEE International Symposium on Industrial Electronics, Bari, 2010: 1110-1114. [19] Wu T, Castellazzi A.Temperature adaptive IGBT gate-driver design[C]//14th European Conference on Power Electronics and Applications, Birmingham, 2011: 1-6. [20] Sathik M H M, Prasanth S, Sasongko F, et al. A dynamic thermal controller for power semiconductor devices[C]//2018 IEEE Applied Power Electronics Conference and Exposition (APEC), San Antonio, 2018: 2792-2797. [21] 桑亚雷, 王学梅, 张波. 基于驱动电压调节的IGBT结温跟踪管控策略及实现[J]. 电工电能新技术, 2019, 38(4): 47-54. Sang Yalei, Wang Xuemei, Zhang Bo.Tracking control strategy and implementation of IGBTs junction temperature based on gate drive voltage adjustment[J]. Advanced Technology of Electrical Engineering and Energy, 2019, 38(4): 47-54. [22] Prasobhu P K, Raveendran V, Buticchi G, et al.Active thermal control of GaN-based DC/DC converter[J]. IEEE Transactions on Industry Applications, 2018, 54(4): 3529-3540. [23] Ali S H, Heydarzadeh M, Dusmez S, et al.Lifetime estimation of discrete IGBT devices based on gaussian process[J]. IEEE Transactions on Industry Applications, 2018, 54(1): 395-403. [24] Broeck C, Ruppert L A, Lorenz R D, et al.Active thermal cycle reduction of power modules via gate resistance manipulation[C]//2018 IEEE Applied Power Electronics Conference and Exposition (APEC), San Antonio, 2018: 3074-3082. [25] Sun Yaxiu, Sun Li, Esmaeli A, et al.A novel three stage drive circuit for IGBT[C]//1st IEEE Conference on Industrial Electronics and Applications, Singapore, 2006: 1-6. [26] Engelmann G, Ludecke C, Bundgen D, et al.Experimental analysis of the switching behavior of an IGBT using a three-stage gate driver[C]//8th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Florianopolis, 2017: 1-8. [27] Luo Haoze, Iannuzzo F, Ma Ke, et al.Active gate driving method for reliability improvement of IGBTs via junction temperature swing reduction[C]//7th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Vancouver, 2016: 1-7. [28] Trzynadlowski A M, Kirlin R L.Space vector PWM technique with minimum switching losses and a variable pulse rate for VSI[J]. IEEE Transactions on Industrial Electronics, 1997, 44(2): 173-181. [29] Du Xiong, Li Gaoxian, Sun Pengju, et al.A hybrid modulation method for lifetime extension of power semiconductors in wind power converters[C]//2015 IEEE Applied Power Electronics Conference and Exposition (APEC), Charlotte, 2015: 2565-2570. [30] Ali S Q, Bhattacharya S, Mascarella D, et al.Thermal management during stalled rotor by conduction loss redistribution[C]//2015 IEEE Transportation Electrification Conference and Expo (ITEC), Dearborn, 2015: 1-6. [31] Falck J, Andresen M, Liserre M.Thermal-based finite control set model predictive control for IGBT power electronic converters[C]//2016 IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, 2016: 1-7. [32] Ozkan G, Papari B, Hoang P H, et al.An active thermal control method for AC-DC power converter with sequence-based control approach[C]//2019 IEEE Electric Ship Technologies Symposium (ESTS), Washington, 2019: 263-267. [33] Falck J, Buticchi G, Liserre M.Thermal stress based model predictive control of electric drives[J]. IEEE Transactions on Industry Applications, 2018, 54(2): 1513-1522. [34] Andresen M, Buticchi G, Liserre M.Active thermal control of isolated soft switching DC/DC converters[C]//42nd Annual Conference of the IEEE Industrial Electronics Society, Florence, 2016: 6818-6823. [35] Dusmez S, Akin B.An active life extension strategy for thermally aged power switches based on the pulse-width adjustment method in interleaved converters[J]. IEEE Transactions on Power Electronics, 2016, 31(7): 5149-5160. [36] 吴军科, 周雒维, 王博, 等. 基于开关轨迹动态调整的变流器内部热管理[J]. 电源学报, 2016, 14(6): 46-52. Wu Junke, Zhou Luowei, Wang Bo, et al.Internal thermal management of power converter based on switching trace adjustment[J]. Journal of Power Supply, 2016, 14(6): 46-52. [37] 周雒维, 张益, 王博. 一种基于调节缓冲电容的IGBT热管理方法[J]. 电机与控制学报, 2019, 23(4): 28-36. Zhou Luowei, Zhang Yi, Wang Bo.IGBT thermal management method based on snubber capacitor[J]. Electric Machines and Control, 2019, 23(4): 28-36. [38] Wang Bo, Zhou Luowei, Zhang Yi, et al.Active junction temperature control of IGBT based on adjusting the turn-off trajectory[J]. IEEE Transactions on Power Electronics, 2018, 33(7): 5811-5823. [39] Robinson F.Power electronics converters, applications and design[J]. Microelectronics Journal, 1997, 28(1): 150-106. [40] Yu Chenyen, Tamura J, Lorenz R D.Optimum DC bus voltage analysis and calculation method for inverters/motors with variable DC bus voltage[J]. IEEE Transactions on Industry Applications, 2013, 49(6): 2619-2627. [41] Lemmens J, Vanassche P, Driesen J.Dynamic DC-link voltage adaptation for thermal management of traction drives[C]//IEEE Energy Conversion Congress and Expo, Denver, 2013: 180-187. [42] Wang Xubin, Wang Xuemei, Yuan Xun.An optimal DC bus voltage control method to improve the junction temperature of IGBTs in low speed oper-ations of traction applications[C]//2nd Annual Southern Power Electronics Conference (SPEC), Auckland, 2016: 1-6. [43] Estima J O, Marques C A J. Efficiency analysis of drive train topologies applied to electric/hybrid vehicles[J]. IEEE Transactions on Vehicular Technology, 2012, 61(3): 1021-1031. [44] Ma Ke, Liserre M, Blaabjerg F.Reactive power influence on the thermal cycling of multi-MW wind power inverter[J]. IEEE Transactions on Industry Applications, 2013, 49(2): 922-930. [45] Lesnicar A, Marquardt R.An innovative modular multilevel converter topology suitable for a wide power range[C]//IEEE Bologna Power Tech Con-ference, Bologna, 2003: 1-6. [46] Bakhshizadeh M K, Ma K, Loh P C, et al.Indirect thermal control for improved reliability of modular multilevel converter by utilizing circulating current[C]// 2015 IEEE Applied Power Electronics Conference and Exposition (APEC), Charlotte, 2015: 2167-2173. [47] Tu Qingrui, Xu Zheng, Xu Lie.Reduced switching-frequency modulation and circulating current suppression for modular multilevel converters[J]. IEEE Transactions on Power Delivery, 2011, 26(3): 2009-2017. [48] Yang Yongheng, Koutroulis E, Sangwongwanich A, et al.Minimizing the levelized cost of energy in single-phase photovoltaic systems with an absolute active power control[C]//2015 IEEE Energy Con-version Congress and Exposition (ECCE), Montreal, 2015: 28-34. [49] Falck J, Andresen M, Liserre M.Active methods to improve reliability in power electronics[C]//43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, 2017: 7923-7928. [50] Liserre M, Andresen M, Costa L, et al.Power routing in modular smart transformers: active thermal control through uneven loading of cells[J]. IEEE Industrial Electronics Magazine, 2016, 10(3): 43-53. [51] Ko Y, Andresen M, Buticchi G, et al.Power routing for cascaded H-bridge converters[J]. IEEE Transa-ctions on Power Electronics, 2017, 32(12): 9435-9446. [52] Yan Hao, Buticchi G, Yang Jiajun, et al.Active thermal control for modular power converters in multi-phase permanent magnet synchronous motor drive system[J]. IEEE Access, 2021, 9: 7054-7063. [53] Blasko V, Lukaszewski R, Sladky R.On line thermal model and thermal management strategy of a three phase voltage source inverter[C]//34th IAS Annual Meeting, Phoenix, 1999: 1423-1431. [54] Yang Shaoyong, Xiang Dawei, Bryant A, et al.Condition monitoring for device reliability in power electronic converters: a review[J]. IEEE Transactions on Power Electronics, 2011, 25(11): 2734-2752. [55] Kovaevi I F, Drofenik U, Kolar J W.New physical model for lifetime estimation of power modules[C]// Power Electronics Conference, Sapporo, 2010: 2106-2114. [56] 王博. 基于寿命模型的IGBT模块结温管理研究[D]. 重庆: 重庆大学, 2018. [57] 姚芳, 胡洋, 李铮, 等. 基于结温监测的风电IGBT热安全性和寿命耗损研究[J]. 电工技术学报, 2018, 33(9): 2024-2033. Yao Fang, Hu Yang, Li Zheng, et al.Study on thermal safety and lifetime consumption of IGBT in wind power converters based on junction temperature monitoring[J]. Transactions of China Electrotechnical Society, 2018, 33(9): 2024-2033. [58] Chen Ying, Men Weiyang, Yuan Zenghui, et al.Nonlinear damage accumulation rule for solder life prediction under combined temperature profile with varying amplitude[J]. IEEE Transactions on Com-ponents, Packaging and Manufacturing Technology, 2019, 9(1): 39-50. [59] Zhang Jun, Du Xiong, Zeng Cheng, et al.A lifetime extension strategy for power devices in the wind power converters based on the distribution characteri-stics of consumed lifetime[C]//2017 IEEE Applied Power Electronics Conference and Exposition (APEC), Tampa, 2017: 761-766. [61] Kaczorowski D, Michalak B, Mertens A.A novel thermal management algorithm for improved lifetime and overload capabilities of traction converters[C]// 17th European Conference on Power Electronics and Applications, Geneva, 2015: 1-10. [62] Andresen M, Buticchi G, Falck J, et al.Active thermal management for a single-phase H-bridge inverter employing switching frequency control[C]// PCIM Europe 2015, Nuremberg, 2015: 1-8. [63] Weckert M, Jörg Roth-Stielow.Chances and limits of a thermal control for a three-phase voltage source inverter in traction applications using permanent magnet synchronous or induction machines[C]//14th European Conference on Power Electronics and Applications, Birmingham, 2011: 1-10. [64] Blasko V, Lukaszewski R, Sladky R.On line thermal model and thermal management strategy of a three phase voltage source inverter[C]//Thirty-Forth IAS Annual Meeting, Phoenix, 1999: 1423-1431. [65] Wu Junke, Zhou Luowei, Sun Pengju, et al.Smooth control of insulated gate bipolar transistors junction temperature in a small-scale wind power converter[J]. IET Power Electronics, 2016, 9(3): 393-400. [66] Prasobhu P K, Buticchi G, Brueske S, et al.Gate driver for the active thermal control of a DC/DC GaN-based converter[C]//2016 IEEE Engery Con-version Congress and Exposition (ECCE), Milwaukee, 2016: 1-8. [67] Soldati A, Dossena F, Pietrini G, et al.Thermal stress mitigation by active thermal control: architectures, models and specific hardware[C]//2017 IEEE Energy Conversion Congress and Exposition (ECCE), Cincinnati, 2017: 3822-3829. [68] Ugur E, Dusmez S, Akin B.An investigation on diagnosis-based power switch lifetime extension strategies for three-phase inverters[J]. IEEE Transa-ctions on Industry Applications, 2019, 55(2): 2064-2075. [69] Chen Quan, Chen Zhe, Wang Qunjing, et al.Analyze and improve lifetime in 3L-NPC inverter from power cycle and thermal balance[C]//17th International Con-ference on Electrical Machines and Systems (ICEMS), Hangzhou, 2014: 974-980. [70] Weckert M, Jörg Roth-Stielow.Chances and limits of a thermal control for a three-phase voltage source inverter in traction applications using permanent magnet synchronous or induction machines[C]//14th European Conference on Power Electronics and Applications, Birmingham, 2011: 1-10. [71] Sujod M Z, Erlich I, Engelhardt S.Improving the reactive power capability of the DFIG-based wind turbine during operation around the synchronous speed[J]. IEEE Transactions on Energy Conversion, 2013, 28(3): 736-745. [72] Ma Ke, Blaabjerg F.Modulation methods for neutral-point-clamped wind power converter achieving loss and thermal redistribution under low-voltage ride-through[J]. IEEE Transactions on Industrial Elec-tronics, 2014, 61(2): 835-845. [73] Lemmens J, Vanassche P, Driesen J.Optimal control of traction motor drives under electrothermal con-straints[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2014, 2(2): 249-263. [74] He Jiangbiao, Wei Lixiang, Demerdash N A O. Power cycling lifetime improvement of three-level NPC inverters with an improved DPWM method[C]// Applied Power Electronics Conference and Exposition (APEC), Long Beach, 2016: 2826-2832. [75] Kaku B.Switching loss minimized space vector PWM method for IGBT three-level inverter[J]. IEE Proceedings-Electric Power Applications, 1997, 144(3): 182-190. [76] Blaabjerg F, Ma Ke.Thermal optimised modulation methods of three-level neutral-point-clamped inverter for 10MW wind turbines under low-voltage ride through[J]. IET Power Electronics, 2012, 5(6): 920-927. [77] Ko Y, Andresen M, Buticchi G, et al.Thermally compensated discontinuous modulation strategy for cascaded H-bridge converters[J]. IEEE Transactions on Power Electronics, 2017, 33(3): 2704-2713. [78] Mughis M A, Sudiharto I, Ferdiansyah I, et al.Design and implementation of partial M-type zero voltage resonant circuit interleaved bidirectional DC-DC converter (energy storage and load sharing)[C]// International Electronics Symposium on Engineering Technology and Applications, Bali, 2018: 123-128. [79] Polom T A, Wang Boru, Lorenz R D.ΔTj control of switching power devices at thermal boundaries via physics-based loss manipulation[C]//2016 IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, 2016: 1-8. [80] Sathik M H M, Prasanth S, Sasongko F, et al. A dynamic thermal controller for power semiconductor devices[C]//2018 IEEE Applied Power Electronics Conference and Exposition, San Antonio, 2018: 2792-2797. [81] Weckert M, Jörg Roth-Stielow.Chances and limits of a thermal control for a three-phase voltage source inverter in traction applications using permanent magnet synchronous or induction machines[C]//14th European Conference on Power Electronics and Applications, Birmingham, 2011: 1-10. [82] Yu Chenyen, Tamura J, Lorenz R D.Control method for calculating optimum DC bus voltage to improve drive system efficiency in variable DC bus drive systems[C]//Energy Conversion Congress & Exposition, Raleigh, 2012: 2992-2999. [83] Zhang Jianwen, Wang Jiacheng, Cai Xu.Active thermal control-based anticondensation strategy in paralleled wind power converters by adjusting reactive circulating current[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2018, 6(1): 277-291. [84] Raveendran V, Andresen M, Buticchi G, et al.Thermal stress based power routing of smart trans-former with CHB and DAB converters[J]. IEEE Transactions on Power Electronics, 2020, 35(4): 4205-4215. [85] Ko Y, Raveendran V, Andresen M, et al.Thermally compensated discontinuous modulation for MVAC/ LVDC building blocks of modular smart transfor-mers[J]. IEEE Transactions on Power Electronics, 2020, 35(1): 220-231. [86] Kaczorowski D, Michalak B, Mertens A.A novel thermal management algorithm for improved lifetime and overload capabilities of traction converters[C]// 17th European Conference on Power Electronics and Applications, Geneva, 2015: 1-10. [87] Murdock D A, Torres J E R, Member, et al. Active thermal control of power electronic modules[J]. IEEE Transactions on Industry Applications, 2006, 42(2): 552-558. [88] Weckert M, Jörg Roth-Stielow.Chances and limits of a thermal control for a three-phase voltage source inverter in traction applications using permanent magnet synchronous or induction machines[C]//14th European Conference on Power Electronics and Applications, Birmingham, 2011: 1-10. [89] Lemmens J, Vanassche P, Driesen J.Optimal control of traction motor drives under electrothermal con-straints[J]. IEEE Journal of Emerging & Selected Topics in Power Electronics, 2014, 2(2): 249-263. [90] Andresen M, Liserre M, Buticchi G.Review of active thermal and lifetime control techniques for power electronic modules[C]//16th European Conference on Power Electronics and Applications, Lappeenranta, 2014: 1-10. |
|
|
|