|
|
Adaptive Power Demand Prediction Model of Energy Storage Based on Markov Chain |
He Junqiang1,2,3, Shi Changli1,2, Wei Tongzhen1,2 |
1. Institute of Electrical Engineering Chinese Academy of Sciences Beijing 100190 China; 2. School of Electronic Electrical and Communication Engineering University of Chinese Academy of Sciences Beijing 100049 China; 3. School of Electronic Information Engineering Taiyuan University of Science and Technology Taiyuan 030024 China |
|
|
Abstract Due to the uncertainty of power demand of energy storage system (ESS) when ESS participates in automatic generation control (AGC) with thermal generators, an adaptive ESS power demand prediction model based on Markov chain is proposed. Firstly, according to the uncertainty of the output power of thermal generators in response to the AGC command, the Markov chain is used to model the ESS power demand in prediction horizon, and a posteriori information is used to adapt to the fluctuations of the AGC command. Secondly, to reasonably select random scenarios of power demand, a scenario tree generation approach with variable prediction horizon is presented. The approach can select scenarios more effectively when the number of nodes is fixed. A simulation was implemented to validate the effectiveness of the prediction model. The results show that compared with the Markov model without adaptive adjustment, the presented adaptive prediction model can improve the prediction accuracy by 8.28%. The prediction accuracy of the presented scenario tree approach is improved by 6.67% compared with the fixed scenario tree structure method, and 4.65% higher than the maximum likelihood estimate method.
|
Received: 30 June 2020
|
|
|
|
|
[1] Latif A, Hussain S S, Das D C.State-of-the-art of controllers and soft computing techniques for regulated load frequency management of single/ multi-area traditional and renewable energy based power systems[J]. Applied Energy, 2020, 266(114858). [2] Ashouri Z A, Toulabi M, Dobakhshari A S.Frequency stability improvement in wind-thermal dominated power grids[J]. IET Generation, Transmission & Distribution, 2020, 14(4): 619-627. [3] 汤杰, 李欣然, 黄际元, 等. 以净效益最大为目标的储能电池参与二次调频的容量配置方法[J]. 电工技术学报, 2019, 34(5): 963-972. Tang Jie, Li Xinran, Huang Jiyuan, et al.Capacity allocation of BESS in secondary frequency regulation with the goal of maximum net benefit[J]. Transactions of China Electrotechnical Society, 2019, 34(5): 963-972. [4] Xie Xiaorong, Guo Yonghong, Wang Bin, et al.Improving AGC performance of coal-fueled thermal generators using multi-MW scale BESS: a practical application[J]. IEEE Transactions on Smart Grid, 2018, 9(3): 1769-1777. [5] Tan Y, Muttaqi K, Ciufo P.Enhanced frequency regulation using multilevel energy storage in remote area power supply systems[J]. IEEE Transactions on Power System, 2019, 34(1): 163-170. [6] 马智慧, 李欣然, 谭庄熙, 等. 考虑储能调频死区的一次调频控制方法[J]. 电工技术学报, 2019, 34(10): 2102-2115. Ma Zhihui, Li Xinran, Tan Zhuangxi, et al.Integrated control of primary frequency regulation considering dead band of energy storage[J]. Transactions of China Electrotechnical Society, 2019, 34(10): 2102-2115. [7] Akram U, Nadarajah M, Shah R.A review on rapid responsive energy storage technologies for frequency regulation in modern power systems[J]. Renewable & Sustainable Energy Reviews, 2020, 120: 1-18. [8] 胡泽春, 罗浩成. 大规模可再生能源接入背景下自动发电控制研究现状与展望[J]. 电力系统自动化, 2018, 42(8): 8-21. Hu Zechun, Luo Haocheng.Research status and prospect of automatic generation control with integration large-scale renewable energy[J]. Automation of Electric Power Systems, 2018, 42(8): 8-21. [9] 孙冰莹, 刘宗歧, 杨水丽, 等. 补偿度实时优化的储能-火电联合AGC策略[J]. 电网技术, 2018, 42(2): 426-433. Sun Bingying, Liu Zongqi, Yang Shuili, et al.A real-Time optimization method of compensation degree for storage coordinated with thermal power unit in AGC[J]. Power System Technology, 2018, 42(2): 426-433. [10] 孙丙香, 李旸熙, 龚敏明, 等. 参与AGC辅助服务的锂离子电池储能系统经济性研究[J]. 电工技术学报, 2020, 35(19): 4048-4061. Sun Bingxiang, Li Yangxi, Gong Minming, et al.Study on the economy of energy storage system with lithium-ion battery participating in AGC auxiliary service[J]. Transactions of China Electrotechnical Society, 2020, 35(19): 4048-4061. [11] 李欣然, 黄际元, 陈远扬, 等. 基于灵敏度分析的储能电池参与二次调频控制策略[J]. 电工技术学报, 2017, 32(12): 224-233. Li Xinran, Huang Jiyuan, Chen Yuanyang, et al.Battery energy storage control strategy in secondary frequency regulation considering its action moment and depth[J]. Transactions of China Electrotechnical Society, 2017, 32(12): 224-233. [12] Donadee J, Wang J.AGC signal modeling for energy storage operations[J]. IEEE Transactions on Power Systems, 2014, 29(5): 2567-2568. [13] Cheng Y, Tabrizi M, Sahni M, et al.Dynamic available AGC based approach for enhancing utility scale energy storage performance[J]. IEEE Transactions on Smart Grid, 2014, 5(2): 1070-1078. [14] 赵源筱, 耿光超, 江全元, 等. 考虑功率变化速率的储能辅助单机调频控制策略[J]. 电力自动化设备, 2020, 40(1): 141-147. Zhao Yuanxiao, Geng Guangchao, Jiang Quanyuan, et al.Frequency control strategy of single-generator supporting by energy storage considering power change rate[J]. Electric Power Automation Equipment, 2020, 40(1): 141-147. [15] 张圣祺, 袁蓓, 徐青山, 等. 规模化储能参与下的电网二次调频优化控制策略[J]. 电力自动化设备, 2019, 39(5): 82-88. Zhang Shengqi, Yuan Bei, Xu Qingshan, et al.Optimal control strategy of secondary frequency regulation for power grid with large-scale energy storages[J]. Electric Power Automation Equipment, 2019, 39(5): 82-88. [16] Wang Ying, Wan Can, Zhou Zhi, et al.Improving deployment availability of energy storage with data-driven AGC signal models[J]. IEEE Transactions on Power Systems, 2018, 33(4): 4207-4217. [17] Ansari M, Awami A T, Sortomme E, et al.Coordinated bidding of ancillary services for vehicle-to-grid using fuzzy optimization[J]. IEEE Transactions on Smart Grid, 2015, 6(1): 261-270. [18] 朱晨曦, 张焰, 严正, 等. 采用改进马尔科夫链蒙特卡洛法的风电功率序列建模[J]. 电工技术学报, 2020, 35(3): 577-589. Zhu Chenxi, Zhang Yan, Yan Zheng, et al.A wind power time series modeling method based on the improved Markov chain Monte Carlo method[J]. Transactions of China Electrotechnical Society, 2020, 35(3): 577-589. [19] 张帅, 杨晶显, 刘继春, 等. 基于多尺度时序建模与估计的电力负荷数据恢复[J]. 电工技术学报, 2020, 35(13): 2736-2746. Zhang Shuai, Yang Jingxian, Liu Jichun, et al.Power load recovery based on multi-scale time-series modeling and estimation[J]. Transactions of China Electrotechnical Society, 2020, 35(13): 2736-2746. [20] 董雷, 刘梦夏, 陈乃仕, 等. 基于随机模型预测控制的分布式能源协调优化控制[J]. 电网技术, 2018, 42(10): 3219-3226. Dong Lei, Liu Mengxia, Chen Naishi, et al.Coordinated optimal control of distributed energy based on stochastic model predictive control[J]. Power System Technology, 2018, 42(10): 3219-3226. [21] Golchoubian P, Azad N L, Ponnambalam K.Stochastic nonlinear model predictive control of battery-supercapacitor hybrid energy storage systems in electric vehicles[C]//2017 American Control Conference (ACC), Seattle, WA, 2017: 1648-1653. |
|
|
|