|
|
Series-Connected DC Voltage Harmonics Compensation Circuit and Application in Multi-Terminal DC |
Yang Rongfeng1, Yu Yannan2, Wang Guoling1, Wu Defeng1, Yu Wanneng1 |
1. School of Marine Engineering Jimei University Xiamen 361021 China; 2. College of Mechanical and Control Engineering Guilin Unversity of Technology Guilin 541006 China |
|
|
Abstract The rectifiers always employ bulky capacitors to filter the harmonics, but the capacitors in DC grid will discharge gigantic current during DC short conditions, furthermore, the capacitors occupy space and cost much in medium voltage application. This paper proposed one series-connected active voltage compensation circuit, which generates the negative harmonic voltage and attenuates the rectifier output voltage fluctuations without DC grid capacitors. This paper proposes double-loop PI and sliding mode control methods to track the harmonics voltage with excellent performance and maintain the independent capacitor voltage of the compensation circuit constant. The abruptly load changing condition is also analyzed. Furthermore, this series-connected circuit is applied in multi-terminal DC (MTDC) and one master-slave control structure is employed for power flow control avoiding interferences between multi-purpose functions. The proposed circuit and control methods are verified through comprehensive simulations.
|
Received: 20 June 2020
|
|
|
|
|
[1] 严胜, 罗湘, 贺之渊. 直流电网核心装备及关键技术展望[J]. 电力系统自动化, 2019, 43(3): 205-216. Yan Sheng, Luo Xiang, He Zhiyuan.Prospect of core equipment and key technology for DC power grid[J]. Automation of Electric Power Systems, 2019, 43(3): 205-216. [2] 王守相, 刘琪, 薛士敏, 等. 直流配电系统控制与保护协同关键技术及展望[J]. 电力系统自动化, 2019, 43(23): 23-30. Wang Shouxiang, Liu Qi, Xue Shimin, et al.Key technologies and prospect for coordinated control and protection in DC distribution system[J]. Automation of Electric Power Systems, 2019, 43(23): 23-30. [3] Kuntal S, Abhisek U, Soumya S N, et al.DC marine power system: transient behavior and fault management aspects[J]. IEEE Transactions on Industrial Infor-matics, 2019, 15(4): 1911-1925. [4] IEEEStd 1709—2018 IEEE recommended practice for 1kV to 35kV medium-voltage DC power systems on ships[S]. 2018. [5] 李永刚, 韩冰. 低压直流配电系统保护研究综述[J]. 华北电力大学学报(自然科学版), 2020, 47(1): 17-23, 41. Li Yonggang, Han Bing.Review on protection of LVDC distribution system research[J]. Journal of North China Electric Power University (Natural Science Edition), 2020, 47(1): 17-23, 41. [6] Chen Yu, Li Zuoyu, Zhao Shanshan, et al.Design and implementation of a modular multilevel converter with hierarchical redundancy ability for electric ship MVDC system[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2017, 5(1): 189-202. [7] 刘计龙, 朱志超, 肖飞, 等. 一种面向舰船综合电力系统的模块化三端口直流变换器[J]. 电工技术学报, 2020, 35(19): 4085-4096. Liu Jilong, Zhu Zhichao, Xiao Fei, et al.A modular three-port DC-DC converter for vessel integrated power system[J]. Transactions of China Electro-technical Society, 2020, 35(19): 4085-4096. [8] Jitendra S, Norbert F, Joachim B, et al.High-current variable-voltage rectifiers: state of the art topo-logies[J]. IET Power Electronics, 2015, 8(6): 1068-1080. [9] 秦俊峰, 白洪芬, 彭亚东, 等电力推进船舶电网多脉冲变压整流器仿真研究[J]. 舰船科学技术, 2017, 39(13): 85-88, 93. Qin Junfeng, Bai Hongfen, Peng Yadong, et al.Research on simulation model of multi-pulse transformation rectifier applied in ship electric propulsion power network[J]. Ship Science and Technology, 2017, 39(13): 85-88, 93. [10] 贾科, 宣振文, 李论, 等. 直流故障下VSC换流器本体馈流过程分析[J]. 中国电机工程学报, 2018, 38(10): 2883-2892, 3139. Jia Ke, Xuan Zhenwen, Li Lun, et al.Analysis of VSC converter current feeding process during DC faults[J]. Proceedings of the CSEE, 2018, 38(10): 2883-2892, 3139. [11] 段国朝, 王跃, 尹太元, 等. 模块化多电平变流器直流短路故障电流计算[J]. 电网技术, 2018, 42(7): 2145-2152. Duan Guozhao, Wang Yue, Yin Taiyuan, et al.DC short circuit current calculation for modular multilevel converter[J]. Power System Technology, 2018, 42(7): 2145-2152. [12] 陶以彬, 朱旭, 陈武, 等. 直流电网中潮流控制器电路拓扑比较[J]. 电力系统自动化, 2016, 40(17): 232-239. Yao Yibin, Zhu Xu, Chen Wu, et al.Comparisons of power flow controller topologies in DC power grids[J]. Automation of Electric Power Systems, 2016, 40(17): 232-239. [13] Danillo B R, Paulo R S, Gustavo B L, et al.Grid connected dc distribution network deploying high power density rectifier for DC voltage stabilization[C]//2016 IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, 2016: 3585-3590. [14] Barupati P K, Mukherjee S, Jonsson T, et al. Series-connected DC-DC converter for controlling the power flow in a HVDC power transmission system: PCT, WO2012/037965 A1[P]. 2012-03-29. [15] 王博超. 基于LC滤波器的单相SPWM逆变器双环控制设计[J]. 电工电气, 2017(4): 21-25, 34. Wang Bochao.Design of double loop control in single-phase sinusoidal pulse width modulation inverter based on LC filter[J]. Electrotechnics Electric, 2017(4): 21-25, 34. [16] 曹文远, 韩民晓, 谢文强, 等. 基于扰动观测器的电压源型逆变器负载电流前馈控制及参数设计方法[J]. 电工技术学报, 2020, 35(4): 862-873. Cao Wenyuan, Han Minxiao, Xie Wenqiang, et al.A disturbance-observer-based load current feedforward control and parameter design method for voltage-sourced inverter[J]. Transactions of China Electro- 17 technical Society, 2020, 35(4): 862-873. [17] 胡寿松. 自动控制原理[M]. 北京: 科学出版社,2013. [18] 刘金琨. 滑模变结构控制MATLAB仿真——基本理论与设计方法[M]. 3版. 北京: 清华大学出版社, 2015. [19] 谢竹君, 林卫星, 张珂, 等. 直流电网潮流分级分区控制方法[J]. 中国电机工程学报, 2016, 36(7): 1959-1968. Xie Zhujun, Lin Weixing, Zhang Ke, et al.Hierarchical and regional power flow control in a DC grid[J]. Proceedings of the CSEE, 2016, 36(7): 1959-1968. [20] 武文, 吴学智, 荆龙, 等. 适用于多端直流输电系统的模块化多端口直流潮流控制器[J]. 电工技术学报, 2019, 34(3): 539-551. Wu Wen, Wu Xuezhi, Jing Long, et al.A modular multi-port DC power flow controller for multi-terminal DC transmission system[J]. Transactions of China Electrotechnical Society, 2019, 34(3): 539-551. [21] 年珩, 叶余桦. 三端口隔离双向DC-DC变换器模型预测控制技术[J]. 电工技术学报, 2020, 35(16): 3478-3488. Nian Heng, Ye Yuhua.Model predictive control of three-port isolated bidirectional DC-DC converter[J]. Transactions of China Electrotechnical Society, 2020, 35(16): 3478-3488. [22] 王彦刚, 戴小平, 吴义伯, 等. IGBT模块功率损耗的产生机理、计算及模拟[J]. 大功率变流技术, 2015(2): 62-66. Wang Yangang, Dai Xiaoping, Wu Yibo, et al.The mechanism, calculation and simulation of power loss for IGBT modules[J]. High Power Converter Tech-nology, 2015(2): 62-66. |
|
|
|