|
|
Molecular Dynamics Simulation of the Influence of Functionalized Doping on Thermodynamic Properties of Cross-Linked Epoxy/Carbon Nanotube Composites |
Ding Mi1, Zou Liang1, Zhang Li1, Zhao Tong1, Li Qingmin2 |
1. School of Electrical Engineering Shandong University Jinan 250061 China; 2. The State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources North China Electric Power University Beijing 102206 China |
|
|
Abstract To explore the effect of carbon nanotube functional doping on the thermodynamic properties of epoxy resin/carbon nanotube nanocomposites, based on the molecular dynamics simulation method, epoxy resin (EP) group nanocomposites doped with functionalized carbon nanotube (CNT) were designed, i.e., pure epoxy resin (EP/neat) model and 7 doped EP/neat models. The doped EP/neat models include doped un-functionalized, amino amine functionalized, carboxyl functionalized, and hydroxyl functionalized CNT models, wherein the functionalized CNTs are grafted four or eight functional groups. Accordingly, the thermal diffusion coefficient (thermal conductivity and specific heat capacity), glass conversion temperature and mechanical properties were calculated under LAMMPS. The results show that the physical properties of epoxy resin nanocomposites doped with carbon nanotubes are improved to different degrees, and the properties of EP/CNTs doped with eight functional groups are better than those of EP/CNTs doped with four corresponding functional groups. EP/AFCNT8 has the most obvious improvement in thermal conductivity, thermal diffusion coefficient and mechanical properties. The overall thermal conductivity and thermal diffusion coefficient increase by 54.92% and 67.30%, respectively. EP/HFCNT8 has the highest glass conversion temperature with an increase of 69.47K, and EP/AFCNT8, which is only inferior to EP/HFCNT8, has a conversion temperature of 58.97K. EP/CFCNT8 has the most significant increase in bulk modulus and Young's modulus at 400K, which are 52.4% and 35.5%, respectively. Due to the cross-linking reaction between amino group and epoxy matrix, the increase in the modulus of EP/AFCNT8 is more obvious, which can better maintain good mechanical properties.
|
Received: 10 July 2020
|
|
|
|
|
[1] 谢庆, 张采芹, 闫纪源, 等. 不均匀直流电场下绝缘材料表面电荷积聚与消散特性[J]. 电工技术学报, 2019, 34(4): 817-830. Xie Qing, Zhang Caiqin, Yan Jiyuan, et al.Study on accumulation and dissipation of surface charges of insulating materials under uneven DC field[J]. Transactions of China Electrotechnical Society, 2019, 34(4): 817-830. [2] 汪沨, 方志, 邱毓昌. 高压直流GIS中绝缘子的表面电荷积聚的研究[J]. 中国电机工程学报, 2005, 25(3): 105-109. Wang Feng, Fang Zhi, Qiu Yuchang.Study of charge accumulation on insulator surface in HVDC gas- insulated switchgear[J]. Proceedings of the CSEE, 2005, 25(3): 105-109. [3] 罗毅, 唐炬, 潘成, 等. 直流GIS/GIL盆式绝缘子表面电荷主导积聚方式的转变机理[J]. 电工技术学报, 2019, 34(23): 5039-5048. Luo Yi, Tang Ju, Pan Cheng, et al.The transition mechanism of surface charge accumulation dom- inating way in DC GIS/GIL[J]. Transactions of China Electrotechnical Society, 2019, 34(23): 5039-5048. [4] Qi Bo, Gao Chunjia, Li Chengrong, et al.The influence of surface charge accumulation on flash- over voltage of GIS/GIL basin insulator under various voltage stresses[J]. International Journal of Electrical Power & Energy Systems, 2019, 105: 514-520. [5] Dong Jinhua, Shao Zhihui, Wang Yang, et al.Effect of temperature gradient on space charge behavior in epoxy resin and its nanocomposites[J]. IEEE Transa- ctions on Dielectrics and Electrical Insulation, 2017, 24(3): 1537-1546. [6] 李博, 淡淑恒. 直流GIL中温度对绝缘子表面电荷积聚时变特性影响研究[J]. 绝缘材料, 2020, 53(4): 52-58. Li Bo, Dan Shuheng.Effect of temperature on time- varying characteristics of surface charge accumu- lation of insulators in DC-GIL[J]. Insulating Materials, 2020, 53(4): 52-58. [7] Straumann U,Schuller M,Franck C M.Theoretical investigation of HVDC disc space charging in SF6 gas insulated systems[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2012, 19(6): 2196-2205. [8] Gremaud R, Molitor F, Doiron C, et al.Solid insulation in DC gas-insulated systems[C]//45th Cigre Session, Paris, 2014: D1-103. [9] 唐炬, 潘成, 王邸博, 等. 高压直流绝缘材料表面电荷积聚研究进展[J]. 电工技术学报, 2017, 32(8): 10-21. Tang Ju, Pan Cheng, Wang Dibo, et al.Development of studies about surface charge accumulation on insulating material under HVDC[J]. Transactions of China Electrotechnical Society, 2017, 32(8): 10-21. [10] Li Chuanyang, Hu Jun, Lin Chuanjie, et al.The control mechanism of surface traps on surface charge behavior in aluminafilled epoxy composites[J]. Journal of Physics D Applied Physics, 2016, 49(44): 445304. [11] 韩智云, 邹亮, 辛喆, 等. 直流GIL绝缘子环氧树脂/碳纳米管复合涂层关键物理性能的分子动力学模拟[J]. 电工技术学报, 2018, 33(20): 4692-4703, 4721. Han Zhiyun, Zou Liang, Xin Zhe, et al.Molecular dynamics simulation of vital physical properties of epoxy/Carbon nanotube composite coating on DC GIL insulators[J]. Transactions of China Electro- technical Society, 2018, 33(20): 4692-4703, 4721. [12] Shao Tao, Liu Feng, Hai Bin, et al.Surface modification of epoxy using an atmospheric pressure dielectric barrier discharge to accelerate surface charge dissipation[J]. IEEE Transactions on Die- lectrics and Electrical Insulation, 2017, 24(3): 1557-1565. [13] 王珏, 徐蓉, 严萍. 环氧复合绝缘材料表面处理方法对高气压下闪络特性的影响[J]. 电工技术学报, 2018, 33(20): 4704-4711. Wang Jue, Xu Rong, Yan Ping.Effect of surface treatment methods of epoxy composite insulation on flashover characteristics under high pressure[J]. Transactions of China Electrotechnical Society, 2018, 33(20): 4704-4711. [14] 杜伯学, 孔晓晓, 肖萌, 等. 高导热聚合物基复合材料研究进展[J]. 电工技术学报, 2018, 33(14): 3149-3159. Du Boxue, Kong Xiaoxiao, Xiao Meng, et al.Advances in thermal performance of polymer-based composites[J]. Transactions of China Electrotech- nical Society, 2018, 33(14): 3149-3159. [15] 张晓星, 陈霄宇, 肖淞, 等. 改性SiO2增强环氧树脂热力学性能的分子动力学模拟[J]. 高电压技术, 2018, 44(3): 740-749. Zhang Xiaoxing, Chen Xiaoyu, Xiao Song, et al.Molecular dynamics simulation of thermal-mechanical properties of modified SiO2 reinforced epoxy resin[J]. High Voltage Engineering, 2018, 44(3): 740-749. [16] Zhang Wenqing, Deng Xi, Sui Gang, et al.Improving interfacial and mechanical properties of Carbon nanotubesized Carbon fiber/epoxy composites[J]. Carbon, 2019, 145: 629-639. [17] Zhang Qingjie, Wu Jianqiao, Liang Gao, et al.Dispersion stability of functionalized MWCNT in the epoxy-amine system and its effects on mechanical and interfacial properties of Carbon fiber com- posites[J]. Materials & Design, 2016, 94: 392-402. [18] Kinloch A J, Mohammed R D, Taylor A C, et al.The effect of silica nano particles and rubber particles on the toughness of multiphase thermosetting epoxy polymers[J]. Journal of Materials Science, 2005, 40(18): 5083-5086. [19] Tsafack T, Alred J M, Wise K E, et al.Exploring the interface between single-walled Carbon nanotubes and epoxy resin[J]. Carbon, 2016, 105: 600-606. [20] Yourdkhani M, Hubert P.A systematic study on dispersion stability of Carbon nanotube-modified epoxy resins[J]. Carbon, 2015, 81: 251-259. [21] Fasanella N A, Sundararaghavan V.Atomistic modeling of thermal conductivity of epoxy nanotube composites[J]. JOM, 2016, 68(5): 1396-1410. [22] Breuer O, Sundararaj U.Big returns from small fibers: a review of polymer/Carbon nanotube composites[J]. Polymer Composites, 2004, 25(6): 630-645. [23] Grujicic M, Sun Yaping, Koudela K L.The effect of covalent functionalization of Carbon nanotube reinforcements on the atomic-level mechanical properties of poly-vinyl-ester-epoxy[J]. Applied Surface Science, 2007, 253(6): 3009-3021. [24] 常艺, 裴久阳, 周苏生, 等. 功能化碳纳米管改性热塑性复合材料研究进展[J]. 材料导报, 2017, 31(19): 84-90. Chang Yi, Pei Jiuyang, Zhou Susheng, et al.Pro- gress in functionalized Carbon nanotubes-modified thermoplastic polymer nanocomposites[J]. Materials Review, 2017, 31(19): 84-90. [25] 肖素芳, 王宗花, 罗国安. 碳纳米管的功能化研究进展[J]. 分析化学, 2005, 33(2): 261-266. Xiao Sufang, Wang Zonghua, Luo Guoan.The progress in functionalization of Carbon nanotube[J]. Chinese Journal of Analytical Chemistry, 2005, 33(2): 261-266. [26] Yang S, Choi J, Cho M.Elastic stiffness and filler size effect of covalently grafted nanosilica polyimide composites: molecular dynamics study[J]. ACS Applied Materials & Interfaces, 2012, 4(9): 4792-4799. [27] 李庆民, 黄旭炜, 刘涛, 等. 分子模拟技术在高电压绝缘领域的应用进展[J]. 电工技术学报, 2016, 31(12): 1-13. Li Qingmin, Huang Xuwei, Liu Tao, et al.Appli- cation progresses of molecular simulation methodo- logy in the area of high voltage insulation[J]. Transactions of China Electrotechnical Society, 2016, 31(12): 1-13. [28] Choi H K, Jung H, Oh Y, et al.Interfacial effects of nitrogen-doped Carbon nanotubes on mechanical and thermal properties of nanocomposites: a molecular dynamics study[J]. Composites Part B: Engineering, 2019, 167: 615-620. [29] Baudot C, Tan C M.Covalent functionalization of Carbon nanotubes and their use in dielectric epoxy composites to improve heat dissipation[J]. Carbon, 2011, 49(7): 2362-2369. [30] 张文卿, 李浩, 隋刚. 碳纳米管提高环氧树脂弹性模量的微观结构机制: 分子模拟与实验验证[J]. 复合材料科学与工程, 2018(11): 15-20. Zhang Wenqing, Li Hao, Sui Gang.Microstructure mechanism of Carbon nanotubesto improve elastic modulus of epoxy resin: a molecular dynamics simulation and experimental verification[J]. Fiber Reinforced Plastics/Composites, 2018(11): 15-20. [31] 叶宏飞, 李东, 姚婷婷, 等. 碳纳米管改性的双马来酰亚胺树脂力学性质的分子尺度模拟研究[J]. 计算力学学报, 2020, 37(2): 131-136. Ye Hongfei, Li Dong, Yao Tingting, et al.The molecular simulation on the mechanical property of the bismaleimide resin modified by Carbon nano- tubes[J]. Chinese Journal of Computational Mechanics, 2020, 37(2): 131-136. [32] Coto B, Antia I, Blanco M, et al.Molecular dynamics study of the influence of functionalization on the elastic properties of single and multiwall Carbon nanotubes[J]. Computational Materials Science, 2011, 50(12): 3417-3424. [33] Boroushak S H, Ansari R, Ajori S.Molecular dynamics simulations of the thermal conductivity of cross-linked functionalized single- and double-walled Carbon nanotubes with polyethylene chains[J]. Diamond & Related Materials, 2018, 86: 173-178. [34] Wu Chaofu, Xu Weijian.Atomistic molecular modeling of cross-linked epoxy resin[J]. Polymer, 2006, 47: 6004-6009. [35] Sun Huai, Jin Zhao, Yang Chunwei, et al.COMPASS II: extended coverage for polymer and drug-like molecule databases[J]. Journal of Molecular Modeling, 2016, 22(2): 1-10. [36] Lide D R, David R.CRC handbook of chemistry and physics[M]. Boca Raton: CRC Press, 1990. [37] Jund P, Jullien R.Molecular-dynamics calculation of the thermal conductivity of vitreous silica[J]. Physical Review B, 1999, 59(21): 13707-13711. [38] Müller-Plathe F.A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity[J]. The Journal of Chemical Physics, 1997, 106(14): 6082-6085. [39] Hoover W G.Computational statistical mechanics[M]. Amsterdam: Elsevier, 2012. [40] Plimpton S.Fast parallel algorithms for short-range molecular-dynamics[J]. Journal of Computational Physics, 1995, 117(1): 1-19. [41] Yu Aiping, Ramesh P, Itkis M E, et al.Graphite nanoplatelet-epoxy composite thermal interface materials[J]. Journal of Physical Chemistry C, 2007, 111(21): 7565-7569. [42] Giang T, Park J, Cho I, et al.Effect of backbone moiety in epoxies on thermal conductivity of epoxy/alumina composite[J]. Polymer Composites, 2013, 34(4): 468-476. [43] Pan T W, Kuo W S, Tai N H.Tailoring anisotropic thermal properties of reduced graphene oxide/ multi-walled Carbon nanotube hybrid composite films[J]. Composites Science & Technology, 2017, 151(20): 44-51. [44] Pittman C U, Wu Z, Jiang Wengjie, et al.Reactivities of amine functions grafted to Carbon fiber surfaces by tetraethylenepentamine designing interfacial bonding[J]. Carbon, 1997, 35(7): 929-943. [45] Pittman C U, He G R, Wu B, et al.Chemical modification of Carbon fiber surfaces by nitric acid oxidation followed by reaction with tetraethylenepen- tamine[J]. Carbon, 1997, 35(3): 317-331. [46] Fan Zheyong, Hirvonen P, Pereira L F C, et al. Bimodal grain-size scaling of thermal transport in poly- crystalline graphene from large-scale molecular dynamics simulations[J]. Nano Letters, 2017, 17(10): 5919-5924. [47] Qiao Geng, Lasfargues M, Alexiadis A, et al.Simulation and experimental study of the specific heat capacity of molten salt based nanofluids[J]. Applied Thermal Engineering, 2017, 111: 1517-1522. [48] 郭亚林, 梁国正, 丘哲明, 等. 碳纤维/有机硅改性环氧树脂复合材料性能研究[J]. 材料工程, 2004(9): 42-44. Guo Yalin, Liang Guozheng, Qiu Zheming, et al.Properties of Carbon fiber/silicone modified epoxy composite[J]. Journal of Materials Engineering, 2004(9): 42-44. [49] Karayiannis N C, Mavrantzas V G, Theodorou D N.Detailed atomistic simulation of the segmental dynamics and barrier properties of amorphous poly (ethylene terephthalate) and poly (ethylene isophtha- late)[J]. Macromolecules, 2004, 37: 2978-2995. [50] 郝留成, 杨保利, 田浩, 等. 特高压盆式绝缘子工艺技术研究[J]. 绝缘材料, 2014, 47(5): 45-49. Hao Liucheng, Yang Baoli, Tian Hao, et al.Study of process technology of UHV basin insulator[J]. Insulating Materials, 2014, 47(5): 45-49. [51] Li Chunyu, Strachan A.Molecular dynamics predi- ctions of thermal and mechanical properties of thermoset polymer EPON862/DETDA[J]. Polymer, 2011, 52(13): 2920-2928. [52] Theodorou D N, Suter U W.Atomistic modeling of mechanical-properties of polymeric glasses[J]. Macro- molecules, 1986, 19: 139-154. [53] Nanda G S, Sravendra R, Jae W C, et al.Polymer nanocomposites based on functionalized Carbon nanotubes[J]. Progress in Polymer Science, 2010, 35(7): 837-867. |
|
|
|