|
|
Bending Characteristics and Structure Design of Smooth Aluminum Composite Sheath in HV XLPE Cables |
Liu Ying1, Chen Jiawei1, Zhao Mingwei1, Jin Jinyuan2, Yue Zhenguo2 |
1. Electrical Engineering School Xi'an Jiaotong University Xi'an 710049 China; 2. Zhejiang Chenguang Cable Co. Ltd Pinghu 314204 China |
|
|
Abstract In recent years, the ablation failures of buffer layer frequently occurred in cables with corrugated aluminum sheaths have aroused the widespread attention of the domestic power industry to the smooth-aluminum-sheathed HV XLPE cables, whose bending performance is the key for engineering application. In this paper, a three-dimensional simulation model of four-point bending of a XLPE cable with smooth aluminum sheath was built, where the cohesive zone model was used to simulate the mechanical behavior of the adhesive layer. As for the bending performance of smooth aluminum composite sheath, the effects of the hot melt adhesive, the compressible thickness of buffer layer, the thickness and material of non-metallic outer-serving, and the inner diameter of aluminum sheath were studied. The results show that if the aluminum sheath is not bonded to the outer-serving, its resistance to bending deformation is so poor that it is prone to wrinkle and so as to squeeze the internal insulation. However, an integral composite sheath can be formed after being bonded, whose bending resistance is dependent on the total thickness. The aluminum sheath thickness is designed according to the short circuit capacity requirement, and the total thickness required for the bending resistance needs to be supplemented by the outer-serving, whose elastic modulus should be no less than 800MPa. The buffer layer has little effect on the bending performance of aluminum sheath, so its thickness can be designed mainly from the absorption of the insulation thermal expansion. Finally, an 110kV XLPE cable with smooth aluminum sheath was trial produced and type tested.
|
Received: 01 May 2020
|
|
|
|
|
[1] 周远翔, 赵健康, 刘睿, 等. 高压/超高压电力电缆关键技术分析及展望[J]. 高电压技术, 2014, 40(9): 2593-2612. Zhou Yuanxiang, Zhao Jiankang, Liu Rui, et al.Key technical analysis and prospect of high voltage and extra-high voltage power cable[J]. High Voltage Engineering, 2014, 40(9): 2593-2612. [2] 尹游, 周凯, 李诗雨, 等. 基于极化去极化电流法的水树老化XLPE电缆界面极化特性分析[J]. 电工技术学报, 2020, 35(12): 2643-2651. Yin You, Zhou Kai, Li Shiyu, et al.Interface polarization characteristics of water tree aged XLPE cables based on polarization and depolarization current method[J]. Transactions of China Electro- technical Society, 2020, 35(12): 2643-2651. [3] 朱煜峰, 许永鹏, 陈孝信, 等. 基于卷积神经网络的直流XLPE电缆局部放电模式识别技术[J]. 电工技术学报, 2020, 35(3): 659-668. Zhu Yufeng, Xu Yongpeng, Chen Xiaoxin, et al.Pattern recognition of partial discharges in DC XLPE cables based on convolutional neural network[J]. Transactions of China Electrotechnical Society, 2020, 35(3): 659-668. [4] 谢声益, 杨帆, 黄鑫, 等. 基于太赫兹时域光谱技术的交联聚乙烯电缆绝缘层气隙检测分析[J]. 电工技术学报, 2020, 35(12): 2698-2707. Xie Shengyi, Yang Fan, Huang Xin, et al.Air gap detection and analysis of XLPE cable insulation based on terahertz time domain spectroscopy[J]. Transactions of China Electrotechnical Society, 2020, 35(12): 2698-2707. [5] CIGRE TB 446. Advanced design of metal laminated coverings: recommendation for tests, guide to use, operational feedback[R].Paris, France: CIGRE Working Group B1-25, 2010. [6] Bjørnar F.Fatigue properties of corrugated sheathing for subsea power cables[D]. Trondheim, Norway: Norwegian University of Science and Technology, 2017. [7] Jiang Lei, Xin Yue, Zhong Lisheng, et al.Study on ablation between metal sheath and buffer layer of high voltage XLPE insulated power cable[C]//2nd IEEE International Conference on Electrical Materials and Power Equipment (ICEMPE), Guangzhou, China, 2019: 372-375. [8] 李小峰, 冯宾, 陈中豪, 等. 500kV交流超高压电缆选型分析[J]. 电网与清洁能源, 2013, 29(11): 29-32, 39. Li Xiaofeng, Feng Bin, Chen Zhonghao, et al.Analysis of the type selection of the 500kV AC extra high voltage cables[J]. Power System and Clean Energy, 2013, 29(11): 29-32, 39. [9] Ford A, Gregory B, King S M, et al.Technological advances in reliable HV XLPE foil laminate cable systems[C]//Jicable 1999, Versailles, France, 1999: 68-73. [10] Umeda K, Matsuura K, Watanabe M, et al.Development of 275kV XLPE cable with aluminum laminated tape and radial moisture barrier[C]// Jicable 2003, Versailles, France, 2003: 54-58. [11] Fara A, Zaccone E.Development of high voltage extruded cables: the Italian experience[C]//Jicable 2007, Versailles, France, 2007: 1-6. [12] 中华人民共和国国家标准GB/T 11017.2—2014 额定电压110kV(Um=126kV)交联聚乙烯绝缘电力电缆及其附件第2部分: 电缆华人民共和国国家标准GB/T 11017.2—2014 额定电压110kV(Um=126kV)交联聚乙烯绝缘电力电缆及其附件第2部分: 电缆[S]. 2014. [13] 诺尔曼E 道林. 工程材料力学行为[M]. 江树勇, 译. 北京: 机械工业出版社, 2015. [14] 中华人民共和国国家标准GB/T 1040.1—2006 塑料拉伸性能的测定第1部分: 总则华人民共和国国家标准GB/T 1040.1—2006 塑料拉伸性能的测定第1部分: 总则[S]. 2006. [15] 中华人民共和国国家标准GB/T 228.1—2010 金属材料拉伸试验第1部分: 室温试验方法[S]. 2010. [16] Du Dandan, Hu Yubing, Tao Jie, et al.Open-hole tensile progressive damage and failure prediction of carbon fiber-reinforced PEEK-titanium laminates[J]. Composites Part B: Engineering, 2016, 91: 65-74. [17] 中华人民共和国国家标准GB/T 2791—1995 胶粘剂 T剥离强度试验方法挠性材料对挠性材料[S]. 1995. [18] 中华人民共和国国家标准GB/T 7124—2008 胶粘剂拉伸剪切强度的测定刚性材料对刚性材料[S]. 2008. [19] 中华人民共和国黑色冶金行业标准YB/T 5349—2014 金属材料弯曲力学性能试验方法[S]. 2014. [20] 戴谋军. 铝合金管材压弯过程数值模拟研究[D]. 长沙: 湖南大学, 2008. [21] Zareei N, Geranmayeh A, Eslami-farsani R. Inter- laminar shear strength and tensile properties of environmentally-friendly fiber metal laminates rein- forced by hybrid basalt and jute fibers[J]. Polymer Testing, 2019, 75: 205-212. [22] Ding Xiang, Zhang Guangqing.Coefficient of equivalent plastic strain based on the associated flow of the Drucker-Prager criterion[J]. International Journal of Non-Linear Mechanics, 2017, 93: 15-20. [23] 中华人民共和国国家标准GB/T 18890.2—2015 额定电压220kV(Um=252kV)交联聚乙烯绝缘电力电缆及其附件第2部分: 电缆华人民共和国国家标准GB/T 18890.2—2015 额定电压220kV(Um=252kV)交联聚乙烯绝缘电力电缆及其附件第2部分: 电缆[S]. 2015. [24] 中华人民共和国国家标准GB/T 22078.2—2008 额定电压500kV(Um=550kV)交联聚乙烯绝缘电力电缆及其附件第2部分: 额定电压500kV (Um= 550kV)交联聚乙烯绝缘电力电缆[S]. 2008. [25] IEEE Std.635TM—2003 IEEE guide for selection and design of aluminum sheaths for power cables[S]. New York, USA: The Institute of Electrical and Electronics Engineers, 2004. [26] 宋余来, 姜龙杰, 鲁志伟, 等. 交联聚乙烯绝缘电力电缆的热膨胀特性[J]. 东北电力大学学报, 2019, 39(2): 15-21. Song Yulai, Jiang Longjie, Lu Zhiwei, et al.Thermal expansion characteristics of cross-linked cable insulation[J]. Journal of Northeast Electric Power University, 2019, 39(2): 15-21. |
|
|
|