|
|
Study on the Nitric Acid Induced Aging Mechanism in Silicone Rubber |
Zhang Ni1, Wang Zheng1,2, Yang Yue1, Peng Xiangyang2, Fang Pengfei1 |
1. School of Physics and Technology Wuhan University Wuhan 430072 China; 2. Guangdong Key Laboratory of Electric Power Equipment Reliability Electric Power Research Institute of Guangdong Power Grid Co. Ltd Guangzhou 510080 China |
|
|
Abstract During the running of a silicone rubber composite insulator, the formation and permeation of nitric acid will reduce the properties of silicone rubber, which threatens the safety of the insulation device in power grid. In this paper, the aging mechanism of nitric acid on silicone rubber was systematically studied by several material characterization techniques. The results of GC-MS show that the polydimethylsiloxane (PDMS) in silicone rubber breaks into low molecular weighted siloxanes (LMW), resulting in the increase of the D4~D7. Moreover, the concentration of D4 in the 600h nitric acid aged sample is 30 times that of the virgin one, and the left relative content of PDMS decreases by 9.16%. The results of FTIR and XPS show that the Si-C bond is broken and oxidized after aging with nitric acid, leading to the increase of Si-O3 and Si-O4, while the content of carbon element is reduced. At the same time, the C-H bond breaks and polar hydroxyl groups are introduced into methyl group. It can be seen that nitric acid mainly causes the aging of silicone rubber from two aspects: one is that the H+ acts on the Si-O bond in PDMS, which depolymerizes the PDMS network structure in silicone rubber; the other is that the highly oxidized NO3- acts on the groups in PDMS, which causes the surface of silicone rubber to change from non-polarity to polarity. These are the main reasons for the decrease in barrier and hydrophobicity of silicone rubber.
|
Received: 06 July 2020
|
|
|
|
|
[1] 梁曦东, 高岩峰, 王家福, 等. 中国硅橡胶复合绝缘子快速发展历程[J]. 高电压技术, 2016, 42(9): 2888-2896. Liang Xidong, Gao Yanfeng, Wang Jiafu, et al.Rapid development of silicone rubber composite insulator in China[J]. High Voltage Engineering, 2016, 42(9): 2888-2896. [2] 张文亮, 吴维宁, 吴光亚, 等. 我国绝缘子的发展现状与应用前景[J]. 高电压技术, 2004, 30(1): 10-12. Zhang Wenliang, Wu Weining, Wu Guangya, et al.The insulators development and application of our country[J]. High Voltage Engineering, 2004, 30(1): 10-12. [3] 曹雯, 栾明杰, 申巍, 等. 绝缘子芯棒碳化对其电场分布特性的影响[J].电机与控制学报, 2018, 22(11): 89-95. Cao Wen, Luan Mingjie, Shen Wei, et al.Effects of carbonization of insulator core rod on properties of electric field distribution[J]. Electric Machines and Control, 2018, 22(11): 89-95. [4] 刘瑛岩, 李建安, 王家福, 等. 硝酸渗透作用对复合绝缘子发生脆断的影响[J]. 高电压技术, 2012, 38(10): 2528-2535. Liu Yingyan, Li Jianan, Wang Jiafu, et al.Influence of diffusion of nitric acid to brittle fracture of composite insulators[J]. High Voltage Engineering, 2012, 38(10): 2528-2535. [5] 李超红. 复合绝缘子芯棒断裂研究现状[J]. 绝缘材料, 2018, 51(6): 7-11. Li Chaohong.Research status on mandrel fracture of composite insulator[J]. Insulating Materials, 2018, 51(6): 7-11. [6] 张福林, 张善钢. 复合绝缘子运行过程中芯棒出现脆断原因初析[J]. 电网技术, 2000, 24(1): 30-32. Zhang Fulin, Zhang Shangang.Preliminary an analysis on brittle fracture phenomenon of polymer insulator FRP rod[J]. Power System Technology, 2000, 24(1): 30-32. [7] 梁曦东, 戴建军. 复合绝缘子用耐酸芯棒的脆断性能研究[J]. 电网技术, 2006, 30(12): 42-46. Liang Xidong, Dai Jianjun.Study on brittle fracture of boron-free FRP rod of composite insulator[J]. Power System Technology, 2006, 30(12): 42-46. [8] Carpenter S H, Kumosa M.An investigation of brittle fracture of composite insulator rods in an acid environ- ment with either static or cyclic loading[J]. Journal of Materials Science, 2000, 35(17): 4465-4476. [9] 梁英. 高温硫化(HTV)硅橡胶电晕老化特性及机理的研究[D]. 保定: 华北电力大学, 2008. [10] 孙伟忠. 温度、酸碱对复合绝缘子憎水性的影响[J].云南电力技术, 2016, 44(5): 48-51. Sun Weizhong.Research on influence of temperature, acid and alkali on hydrophobicity of composite insulator[J]. Yunnan Electric Power, 2016, 44(5): 48-51. [11] Koo J Y, Kim I T, Kim J T, et al.An experimental investigation on the degradation characteristic of the outdoor silicone rubber insulator due to sulfate and nitrate ions[J]. IEEE Report, 2002, 2(1): 370-372. [12] 杨堃, 丁立健, 梁英, 等. 硝酸对合成绝缘子老化作用的初步研究[C]//中国电机工程学会高压专业委员会高电压新技术学组2006年学术年会, 武汉, 2006: 213-216. [13] 梁英, 高婷, 王祥念, 等. 电场和温度协同作用下复合绝缘子用硅橡胶微观结构演化[J]. 电工技术学报, 2020, 35(7): 1575-1583. Liang Ying, Gao Ting, Wang Xiangnian, et al.Microstructure evolution of silicone rubber used for composite insulators under the effects of electric field and temperature[J]. Transactions China Electrotech- nical Society, 2020, 35(7): 1575-1583. [14] 张志劲, 张翼, 蒋兴良, 等. 自然环境不同年限复合绝缘子硅橡胶材料老化特性表征方法研究[J]. 电工技术学报, 2020, 35(6): 1368-1376. Zhang Zhijin, Zhang Yi, Jiang Xingliang, et al.Study on aging characterization methods of composite insulators aging in natural environment for different years[J]. Transactions China Electrotechnical Society, 2020, 35(6): 1368-1376. [15] 夏云峰, 宋新明, 何建宗, 等. 复合绝缘子用硅橡胶老化状态评估方法[J]. 电工技术学报, 2019, 34(1): 440-448. Xia Yunfeng, Song Xinming, He Jianzong, et al.Evaluation method of aging for silicone rubber of composite insulator[J]. Transactions China Electro- technical Society, 2019, 34(1): 440-448. [16] Hillborg H, Ankner J F, Gedde U W, et al.Crosslinked polydimethylsiloxane exposed to oxygen plasma studied by neutron reflectometry and other surface specific technique[J]. Polymer, 2000, 41(18): 6851-6863. [17] Hillborg H, Gedde U W.Silicone Surface Science[M]. Berlin: Springer, 2012. [18] Yilgör E, Yilgör I.Silicone containing copolymers: synthesis, properties and applications[J]. Progress in Polymer Science, 2014, 39(6): 1165-1195. [19] Thomas T H, Kendrick T C.Thermal analysis of polydimethylsiloxanes[J]. Journal of Polymer Science Part B Polymer Physics, 1969, 7(3): 537-549. [20] Hillborg H, Karlsson S, Gedde U W.Characterisation of low molar mass siloxanes extracted from cross- linked polydimethylsiloxanes exposed to corona discharges[J]. Polymer, 2001, 42(21): 8883-8889. [21] Benseddik E, Makhlouki M, Bernede J C.XPS studies of environmental stability of polypyrrole-poly (vinyl alcohol) composites[J]. Synthetic Metals, 1995, 72(2): 237-242. [22] 肖雄, 王建国, 吴照国, 等. 等离子体作用后硅橡胶憎水性恢复及憎水迁移特性研究[J]. 电工技术学报, 2019, 34(增刊1): 433-439. Xiao Xiong, Wang Jianguo, Wu Zhaoguo, et al.Study on hydrophobicity recovery and hydrophobicity transfer of plasma treated silicone rubber[J]. Transactions China Electrotechnical Society, 2019, 34(S1): 433-439. [23] 郑峰. 硅橡胶绝缘材料老化及憎水恢复性的正电子研究[D]. 武汉: 武汉大学, 2014. [24] 彭向阳, 李子健, 黄振, 等. 基于TG-DSC法的复合绝缘子硅橡胶主组分含量研究[J]. 南方电网技术, 2017, 11(1): 36-44. Peng Xiangyang, Li Zijian, Huang Zhen, et al.TG-DSC coupling techniques based investigation on main component content of silicone rubber composite insulators[J]. Southern Power System Technology, 2017, 11(1): 36-44. [25] Camino G, Lomakin S M, Lageard M.Thermal polydimethylsiloxane degradation. part 2. the degra- dation mechanisms[J]. Polymer, 2002, 43(7): 2011-2015. [26] 罗义, 汪政, 陈龙, 等. NO2对复合绝缘子硅橡胶表面结构的影响[J]. 绝缘材料, 2019, 52(3): 40-45. Luo Yi, Wang Zheng, Chen Long, et al.Influence of NO2 on surface structure of silicone rubber for composite insulator[J]. Insulating Materials, 2019, 52(3): 40-45. [27] Zhu Yong, Otsubo M, Honda C, et al.Loss and recovery in hydrophobicity of silicone rubber exposed to corona discharge[J]. Polymer Degradation and Stability, 2006, 91(7): 1448-1454. |
|
|
|