|
|
Key Problems Faced by Defect Diagnosis and Location Technologies for XLPE Distribution Cables |
Shan Bingliang, Li Shuning, Yang Xiao, Wang Wei, Li Chengrong |
State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources North China Electric Power University Beijing 102206 China |
|
|
Abstract Cross-linked polyethylene (XLPE) cables are widely used in urban power distribution systems owing to their excellent performance. To ensure the operational reliability and economy of distribution network, it is a major challenge for accurate status diagnosis of the ageing XLPE distribution cables since part of them in service are approaching or have exceeded their design life. This paper analyzed the validity typical defect diagnostic methods and location technologies in the application of status diagnosis for XLPE distribution cable in field operation deeply, and pointed out the key problems existing in defect diagnosis sensitivity and location accuracy in long cables, identification and localization of aging cable segments and concentration defects and so on. On the basis, suggestions are given from the aspects of improving the sensitivity of concentration defect diagnosis in the cable, realizing accurate defect localization for long cables, studying on the diagnosis and localization for local aging cable segments, etc.
|
Received: 10 June 2021
|
|
|
|
|
[1] 杜伯学, 晨磊, 李进, 等. 高压直流电缆聚乙烯绝缘材料研究现状[J]. 电工技术学报, 2019, 34(1): 179-191. Du Boxue, Chen Lei, Li Jin, et al.Research status of Polyethylene insulation for high voltage direct current cables[J]. Transactions of China Electrotechnical Society, 2019, 34(1): 179-191. [2] Remaining life of existing AC underground lines[R]. CIGRE WG B1-09, 2007. [3] 吴明祥, 欧阳本红, 李文杰. 交联电缆常见故障及原因分析[J]. 中国电力, 2013, 46(5): 71-75. Wu Mingxiang, Ouyang Benhong, Li Wenjie.Common faults and cause analysis of XLPE cables[J]. Electric Power, 2013, 46(5): 71-75. [4] Fournier D, Robertson C.Morphological study of aging phenomena in XLPE by TEM technique[J]. Journal of Polymer Science Part B Polymer Physics, 2015, 34(9): 1621-1628. [5] 金尚儿. 长期运行的110kV XLPE电缆的绝缘状态评估[D]. 广州: 华南理工大学, 2016. [6] 罗潘, 任志刚, 徐阳, 等. 退役高压交联聚乙烯电缆绝缘老化状态分析[J]. 电工技术学报, 2013, 28(10): 41-46. Luo Pan, Ren Zhigang, Xu yang, et al. Aging condition analysis of high voltage XLPE cables out of service[J]. Transactions of China Electrotechnical Society, 2013, 28(10): 41-46. [7] 徐俊, 王晓东, 欧阳本红, 等. 热老化对交联聚乙烯电缆绝缘理化结构的影响[J]. 绝缘材料, 2013, 46(2): 33-37. Xu Jun, Wang Xiaodong, Ouyang Benhong, et al.Effect of thermal aging on the physicochemical structure of XLPE cable insulation[J]. Insulating Materials, 2013, 46(2): 33-37. [8] 卢键. 基于加速电热老化试验的XLPE电缆特性研究[D]. 北京: 华北电力大学, 2016. [9] GB/T 11026.2—2012/IEC 60216—2: 2005电气绝缘材料耐热性, 第2部分: 试验判断标准的选择B/T 11026.2—2012/IEC 60216—2: 2005电气绝缘材料耐热性, 第2部分: 试验判断标准的选择[S]. 2005. [10] Melo A, Martinez M, Queiroz A A A. Analysis of the XLPE insulation of distribution covered conductors in Brazil[J]. Journal of Materials Engineering & Performance, 2014, 23(3): 723-735. [11] Morsy M A, Shwehdi M H.Electron spin resonance spectral study of PVC and XLPE insulation materials and their life time analysis[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2006, 63(3): 624-630. [12] 詹威鹏, 褚学来, 申作家, 等. 加速热氧老化中交联聚乙烯电缆绝缘聚集态结构与介电强度关联性研究[J]. 中国电机工程学报, 2016, 36(17): 4770-4777. Zhan Weipeng, Chu Xuelai, Shen Zuojia, et al.Study on aggregation structure and dielectric strength of XLPE cable insulation in accelerated thermal-oxidative aging[J]. Proceedings of the CSEE, 2016, 36(17): 4770-4777. [13] 刘刚, 刘斯亮, 金尚儿, 等. 基于理、化、电特性的110kV XLPE绝缘电缆剩余寿命的综合评估[J]. 电工技术学报, 2016, 31(12): 72-79. Liu Gang, Liu Siliang, Jin Shanger, et al.Comprehensive evaluation of remaining life of 110kV XLPE insulated cable based on physical, chemical and electrical properties[J]. Transactions of China Electrotechnical Society, 2016, 31(12): 72-79. [14] Morra R M, Braun J M, Seddin H G.Assessment of cable insulation systems by low-frequency dielectric characterization[C]//IEE Conference on Electrical Insulation and Dielectric Phenomena, Knoxville, USA, 1991: 408-413. [15] Hvidsten S, Ildstad E, Sletbak J, et al.Understanding water treeing mechanisms in the development of diagnostic test methods[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1998, 5(5): 754-760. [16] Holmgren B, Werelius P, Eriksson R, et al.Dielectric measurements for diagnosis of XPLE cable insulation[C]// International Conference and Exhibition on Electricity Distribution, Birmingham, UK, 1997: 438. [17] Hvidsten S, Ildstad E, Holmgren B, et al.Correlation between AC breakdown strength and low frequency dielectric loss of water tree aged XLPE cables[J]. IEEE Transactions on Power Delivery, 1998, 13(1): 40-45. [18] Hvidsten S.Nonlinear dielectric response of vented water treed XLPE insulation[C]//IEEE Conference on Electrical Insulation and Dielectric Phenomena, Austin, USA, 1999: 617-621. [19] IEEE Std, 400.2—2013 IEEE guide for field testing of shielded power cable systems using very low frequency (VLF)[S]. 2013. [20] Kim D, Cho Y, Kim S.A study on three dimensional assessment of the aging condition of polymeric medium voltage cables applying very low frequency (VLF) tanδ diagnostic[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2014, 21(3): 940-947. [21] 马楠, 李晋贤, 周海, 等. 基于超低频介损的XLPE电缆绝缘受潮检测判据研究[J]. 电力工程技术, 2020, 39(5): 10-15. Ma Nan, Li Jinxian, Zhou Hai, et al.Detection criterion of XLPE cable insulation based on very low frequency dielectric loss[J]. Electric Power Engineering Technology, 2020, 39(5): 10-15. [22] 黄明, 周凯, 黄科荣, 等. 基于PDC法的绝缘老化电缆低频损耗特性分析[J]. 高电压技术, 2019, 45(3): 959-967. Huang Ming, Zhou Kai, Huang Kerong, et al.Analysis of low-frequency dielectric loss characteristics of degradation cables based on polarization and depolarization current method[J]. High Voltage Engineering, 2019, 45(3): 959-967. [23] 周凯, 李诗雨, 尹游, 等. 退运中压XLPE和EPR电缆老化特性分析[J]. 电工技术学报, 2020, 35(24): 5197-5206. Zhou Kai, Li Shiyu, Yin You, et al.Analysis of aging characteristics of medium voltage XLPE and EPR retired cables[J]. Transactions of China Electrotechnical Society, 2020, 35(24): 5197-5206. [24] 李陈, 雷勇, 周凯, 等. 极化去极化电流技术用于诊断XLPE电缆绝缘老化状态[J]. 电工电能新技术, 2014, 33(4): 32-35. Li Chen, Lei Yong, Zhou Kai, et al.Diagnosis of XLPE cable insulation using polarization and depolarization current measurements[J]. Advanced Technology of Electrical Engineering and Energy, 2014, 33(4): 32-35. [25] Oyegoke B, Birtwhistle D, Lyall J.Condition assessment of XLPE cable insulation using short-time polarization and depolarization current measurements[J]. IET Science Measurement & Technology, 2007, 2(1): 25-31. [26] 尹游, 周凯, 李诗雨, 等. 基于极化去极化电流法的水树老化XLPE电缆界面极化特性分析[J]. 电工技术学报, 2020, 35(12): 2643-2651. Yin You, Zhou Kai, Li Shiyu, et al.Interface polarization characteristics of water tree aged XLPE cables based on polarization and depolarization current method[J]. Transactions of China Electrotechnical Society, 2020, 35(12): 2643-2651. [27] Beigert M, Kranz H G.Destruction free ageing diagnosis of power cable insulation using the isothermal relaxation current analysis[C]//IEEE International Symposium on Electrical Insulation, Pittsburgh, Pennsylvania, 1994: 17-21. [28] Birkner P.Field experience with a condition-based maintenance program of 20-kV XLPE distribution system using IRC-analysis[J]. IEEE Transactions on Power Delivery, 2004, 19(1): 3-8. [29] 高树国, 朱永华, 吴长顺, 等. 基于等温松弛电流法的XLPE绝缘电力电缆老化评估判据研究[J]. 电线电缆, 2014, 1(1): 34-37. Gao Shuguo, Zhu Yonghua, Wu Changshun, et al.Criterion of aging assessment for XLPE insulation power cable based on isothermal relaxation method[J]. Electic Wire & Cable, 2014, 1(1): 34-37. [30] 饶显杰, 周凯, 谢敏, 等. 稳定图法在极化等效电路参数辨识中的应用[J]. 电工技术学报, 2020, 35(10): 2248-2256. Rao Xianjie, Zhou Kai, Xie Min, et al.Application of stabilization diagram method for solving polarization equivalent circuit parameters[J]. Transactions of China Electrotechnical Society, 2020, 35(10): 2248-2256. [31] Werelius P, Tharning P, Eriksson R, et al.Dielectric spectroscopy for diagnosis of water tree deterioration in XLPE cables[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2001, 8(1): 27-42. [32] Werelius P.Development and application of high voltage dielectric spectroscopy for diagnosis of medium voltage XLPE[R]. Elektrotekniska System, Denmark,2006. [33] 周长亮. 基于介电频谱特性的低压橡胶绝缘电缆老化程度评估方法研究[D]. 大连: 大连理工大学, 2012. [34] 周利军, 王媚, 周韫捷, 等. 介电谱用于评估XLPE电缆绝缘劣化状态的研究[J]. 绝缘材料, 2019, 52(1): 52-56. Zhou Lijun, Wang Mei, Zhou Yunjie, et al.Deterioration condition evaluation of XLPE cable insulation by dielectric spectroscopy[J]. Insulating Materials, 2019, 52(1): 52-56. [35] 白龙雷, 周利军, 邢立勐, 等. 高寒环境下低温对乙丙橡胶电缆终端界面放电特性的影响[J]. 电工技术学报, 2020, 35(3): 198-210. Bai Longlei, Zhou Lijun, Xing Limeng, et al.Effect of low temperature on interface discharge characteristics of ethylene-propylene rubber cable termination in high-cold environment[J]. Transactions of China Electrotechnical Society, 2020, 35(3): 198-210. [36] 朱煜峰, 许永鹏, 陈孝信, 等. 基于卷积神经网络的直流XLPE电缆局部放电模式识别技术[J]. 电工技术学报, 2020, 35(3): 211-220. Zhu Yufeng, Xu Yongpeng, Chen Xiaoxin, et al.Recognition of partial discharges in DC XLPE cables based on convolutional neural network[J]. Transactions of China Electrotechnical Society, 2020, 35(3): 211-220. [37] 陈茂荣, 杨忠, 牛海清. 中压电缆缺陷原因及其状态检测技术现状[J]. 电线电缆, 2013(5): 39-42. Chen Maorong, Yang Zhong, Niu Haiqing.The defect reasons and condition detection technique review of distribution cable[J]. Electic Wire & Cable, 2013(5): 39-42. [38] 张忠臣. 聚乙烯中电树枝生长与局部放电特性对应关系研究[D]. 哈尔滨: 哈尔滨理工大学, 2016. [39] 钟志毅, 欧景茹, 郭铁军. 交联聚乙烯绝缘电力电缆交流耐压试验研究[J]. 电网技术, 2007, 31(增刊1): 108-111. Zhong Zhiyi, Ou Jingru, Guo Tiejun.Study on XLPE insulated cable AC voltage withstand test[J]. Power System Technology, 2007, 31(S1): 108-111. [40] Fantoni P F.Wire system aging assessment and condition monitoring using line resonance analysis (LIRA)[R]. Inst. Energy, Halden, Norway, 2005. [41] Ohki Y, Yamada T, Hirai N.Precise location of the excessive temperature points in polymer insulated cables[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2013, 20(6): 2099-2106. [42] Ohki Y, Hirai N.Location attempt of a degraded portion in a long polymer-insulated cable[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2018, 25(6): 2461-2466. [43] 谢敏, 周凯, 赵世林, 等. 新型基于反射系数谱的电力电缆局部缺陷定位方法[J]. 电网技术, 2017, 41(9): 3083-3089. Xie Min, Zhou Kai, Zhao Shilin, et al.A new location method of local defects in power cables based on reflection coefficient spectrum[J]. Power System Technology, 2017, 41(9): 3083-3089. [44] 饶显杰, 周凯, 谢敏, 等. 基于频域反射法的特征时域波形恢复技术[J]. 高电压技术, 2021, 47(4): 1420-1427. Rao Xianjie, Zhou Kai, Xie Min, et al.Recovery technique of characteristic time domain waveform based on frequency domain reflection method[J]. High Voltage Engineering, 2021, 47(4): 1420-1427. [45] 李保生. 基于时域脉冲反射原理的电线电缆精确测长技术研究[D]. 西安: 西安电子科技大学, 2010. [46] Hirai N, Yamada T, Ohki Y.Comparison of broadband impedance spectroscopy and time domain reflectometry for locating cable degradation[C]//IEEE International Conference on Condition Monitoring and Diagnosis, Bali, 2012: 229-232. [47] 高向南. 基于频域反射的电缆局部老化诊断仿真研究[D]. 西安: 西安理工大学, 2020. [48] Tozzi M, Cavallini A, Montanari G C, et al.PD detection in extruded power cables: an approximate propagation model[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2008, 15(3): 832-840. [49] GB/T12706.4—2008 额定电压1kV(Um=1.2kV)到35kV(Um=40.5kV)挤包绝缘电力电缆及附件第4部分: 额定电压6kV(Um=7.2kV)到35kV(Um= 40.5kV)电力电缆附件试验要求[S]. 北京: 中国标准出版社, 2008. [50] 周志强. 基于宽频阻抗谱的电缆局部缺陷诊断方法研究[D]. 武汉: 华中科技大学, 2015. [51] Zhou Zhiqiang, Zhang Dandan, He Junjia, et al.Local degradation diagnosis for cable insulation based on broadband impedance spectroscopy[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2015, 22(4): 2097-2107. [52] 罗杨茜玥. 基于阻抗频域信息的电缆接头内部缺陷评估方法[D]. 重庆: 重庆大学, 2018. [53] 周传璘. 高速数字电路设计中信号完整性分析与研究[D]. 武汉: 武汉理工大学, 2005. |
|
|
|