|
|
Residual Dynamic Decentralized Compensation Control Strategy Considering Disturbance Suppression in DC Microgrid |
Hu Changbin1, Wang Huisheng1, Luo Shanna1, Zhou Jinghua1, Ma Rui2 |
1. College of Electrical and Control Engineering North China University of Technology Beijing 100144 China; 2. State Grid Hebei Electric Power Supply Co. Ltd Shijiazhuang 050022 China |
|
|
Abstract Aiming at the power quality and circulation problems of DC microgrid, a residual dynamic decentralized compensation control strategy which takes into account the disturbance suppression of DC microgrid is proposed. Based on the DC droop control, this strategy first analyzes the disturbance problem of the DC microgrid and the circulation problem in the parallel state. Secondly, a state space model of Buck-type and Boost-type multi-DC-DC converters in parallel is established, and the dynamic decentralized compensation structure of the converter based on residual is derived. The structure is directly compensated at the output of the voltage loop, and the compensation controller Q*(s) is calculated by the disturbance cancellation. The small signal stability analysis method is used to prove the stability of the compensation structure in this paper. Finally, build a digital physics experiment platform based on RTDS, and take the same and different types of converters in parallel for experimental verification. This structure can speed up the dynamic response speed of the DC bus voltage when the distributed power supply and public load are switched on and off, and effectively suppress the influence of circulating current and The double power frequency disturbance of the DC bus voltage caused by the imbalance of the AC side maintains the consistency of the voltage, ensures the stability of the bus voltage, and helps to realize the "plug and play" technology of distributed power.
|
Received: 29 September 2020
|
|
|
|
|
[1] Takantape M M, Allahverdinejad B, Hamzeh M.Accurate oscillatory current-sharing in DC microgrids using distributed cooperative control method[J]. IET Smart Grid, 2020, 3(2): 246-253. [2] 杨新法, 苏剑, 吕志鹏, 等. 微电网技术综述[J]. 中国电机工程学报, 2014, 34(1): 57-70. Yang Xinfa, Su Jian, Lü Zhipeng, et al.Overview on micro-grid technology[J]. Proceedings of the CSEE, 2014, 34(1): 57-70. [3] 王盼宝. 低压直流微电网运行控制与优化配置研究[D]. 哈尔滨: 哈尔滨工业大学, 2016. [4] 李霞林, 郭力, 王成山, 等. 直流微电网关键技术研究综述[J]. 中国电机工程学报, 2016, 36(1): 2-17. Li Xialin, Guo Li, Wang Chengshan, et al.Key technologies of DC microgrids: an overview[J]. Proceedings of the CSEE, 2016, 36(1): 2-17. [5] 谢卫才, 李晓凤, 王世豪, 等. 交直流混合微电网频率和电压的无差控制[J]. 电力系统及其自动化学报, 2019, 31(7): 110-116. Xie Weicai, Li Xiaofeng, Wang Shihao, et al.Deviation-free control of frequent and voltage of AC/DC hybrid micro-grid[J]. Proceedings of the CSU-EPSA, 2019, 31(7): 110-116. [6] 刘子文, 苗世洪, 范志华, 等. 基于自适应下垂特性的孤立直流微电网功率精确分配与电压无偏差控制策略[J]. 电工技术学报, 2019, 34(4): 795-806. Liu Ziwen, Miao Shihong, Fan Zhihua, et al.Accurate power allocation and zero steady-State error voltage control of the islanding DC microgird based on adaptive droop characteristics[J]. Transactions of China Electrotechnical Society, 2019, 34(4): 795-806. [7] 孟建辉, 邹培根, 王毅, 等. 基于灵活虚拟惯性控制的直流微网小信号建模及参数分析[J]. 电工技术学报, 2019, 34(12): 2615-2626. Meng Jianhui, Zou Peigen, Wang Yi, et al.Small-signal modeling and parameter analysis of the DC microgrid based on flexible virtual inertia control[J]. Transactions of China Electrotechnical Society, 2019, 34(12): 2615-2626. [8] 兰征, 涂春鸣, 姜飞. 基于虚拟电机技术的直流微电网与主电网柔性互联策略[J]. 电工技术学报, 2019, 34(8): 1739-1749. Lan Zheng, Tu Chunming, Jiang Fei.The flexible interconnection strategy between DC microgrid and AC grid based on virtual electric machinery technology[J]. Transactions of China Electrotechnical Society, 2019, 34(8): 1739-1749. [9] 郭伟, 赵洪山. 基于事件触发机制的直流微电网多混合储能系统分层协调控制方法[J]. 电工技术学报, 2020, 35(5): 1140-1151. Guo Wei, Zhao Hongshan.Coordinated control method of multiple hybrid energy storage system in DC microgrid based on event-triggered mechanism[J]. Transactions of China Electrotechnical Society, 2020, 35(5): 1140-1151. [10] 王成山, 李微, 王议锋, 等. 直流微电网母线电压波动分类及抑制方法综述[J]. 中国电机工程学报, 2017, 37(1): 84-98. Wang Chengshan, Li Wei, Wang Yifeng, et al.DC bus voltage fluctuation classification and restraint methods review for DC microgrid[J]. Proceedings of the CSEE, 2017, 37(1): 84-98. [11] Wang Cheng, Duan Jiajun, Fan Bo, et al.Decentralized high-Performance control of DC microgrids[J]. IEEE Transactions on Smart Grid, 2019, 10(3): 3355-3363. [12] Samanta S, Mishra J P, Roy B K.Virtual DC machine: an inertia emulation and control technique for a bidirectional DC-DC converter in a DC microgrid[J]. IET Electric Power Applications, 2018, 12(6): 874-884. [13] 李鹏, 李鑫明, 陈安伟, 等. 直流微电网DC/DC双向换流器时间-状态协调最优控制[J]. 电网技术, 2018, 42(1): 41-47. Li Peng, Li Xinming, Chen Anwei, et al.Optimal coordinated time-State control of DC/DC bidirectional converter in DC microgrid[J]. Power System Technology, 2018, 42(1): 41-47. [14] 朱晓荣, 孟凡奇, 谢志云. 基于虚拟同步发电机的直流微网DC-DC变换器控制策略[J]. 电力系统自动化, 2019, 43(21): 132-144. Zhu Xiaorong, Meng Fanqi, Xie Zhiyun.Control strategy of DC-DC converter in DC microgrid based on virtual synchronous generator[J]. Automation of Electric Power Systems, 2019, 43(21): 132-144. [15] 朱晓荣, 候顺达, 李铮. 基于模型预测控制的直流微电网电压动态响应优化[J]. 电网技术, 2020, 44(6): 2187-2195. Zhu Xiaorong, Hou Shunda, Li Zheng.Voltage dynamic response optimization of DC microgrid based on model predictive control[J]. Power System Technology, 2020, 44(6): 2187-2195. [16] 郭振, 乐全明, 郭力, 等. 交直流混合微电网中直流母线电压纹波抑制方法[J]. 电网技术, 2017, 41(9): 2896-2904. Guo Zhen, Le Quanming, Guo Li, et al.Control method of DC bus voltage ripple mitigation in hybrid AC/DC microgrids[J]. Power System Technology, 2017, 41(9): 2896-2904. [17] Li Xialin, Guo Li, Zhang Shaohui, et al.Observer-based DC voltage droop and current feed-forward control of a DC microgrid[J]. IEEE Transactions on Smart Grid, 2018, 9(5): 5207-5216. [18] Tah A, Das D.An enhanced droop control method for accurate load sharing and voltage improvement of isolated and interconnected DC microgrids[J]. IEEE Transactions on Sustainable Energy, 2016, 7(3): 1194-1204. [19] Meng Lexuan, Dragicevic T, Vasquez J C, et al.Tertiary and secondary control levels for efficiency optimization and system damping in droop controlled DC-DC converters[J]. IEEE Transactions on Smart Grid, 2015, 6(6): 2615-2626. [20] Luo Hao, Yang Xu, Krueger M, et al.A plug-and-play monitoring and control architecture for disturbance compensation in rolling mills[J]. IEEE/ASME Transactions on Mechatronics, 2018, 23(1): 200-210. [21] Luo Hao, Krueger M, Koenings T, et al.Real-time optimization of automatic control systems with application to BLDC motor test rig[J]. IEEE Transactions on Industrial Electronics, 2017, 64(5): 4306-4314. [22] 谢文强, 韩民晓, 严稳利, 等. 考虑恒功率负荷特性的直流微电网分级稳定控制策略[J]. 电工技术学报, 2019, 34(16): 3430-3443. Xie Wenqiang, Han Minxiao, Yan Wenli, et al.Hierarchical stability control strategy of DC micro-grid considering constant power load performance[J]. Transactions of China Electrotechnical Society, 2019, 34(16): 3430-3443. [23] 王康, 金宇清, 甘德强, 等. 电力系统小信号稳定分析与控制综述[J]. 电力自动化设备, 2009, 29(5): 10-19. Wang Kang, Jin Yuqing, Gan Deqiang, et al.Survey of power system small signal stability and control[J]. Electric Power Automation Equipment, 2009, 29(5): 10-19. |
|
|
|