|
|
Distributed Secondary Control for Economic Dispatch and Voltage Restoration of DC Microgrid |
Li Zhongwen, Cheng Zhiping, Zhang Shuyuan, Wang Yaoqiang, Si Jikai |
School of Electrical Engineering Zhengzhou University Zhengzhou 450001 China |
|
|
Abstract The droop-based primary control of DC microgrid shows the drawbacks of steady-state bus voltage deviation and inaccurate current sharing. Although, the traditional centralized or distributed secondary control strategy can achieve bus voltage restoration and accurate current sharing. However, the generation cost of each DG unit is not considered in the traditional control strategy. In order to improve the stability and operation efficiency of DC microgrid, distributed average bus voltage recovery control algorithm and distributed optimal load distribution algorithm were designed based on distributed consensus theory. Based on the proposed distributed secondary control, bus voltage restoration and economic dispatch can be achieved simultaneously in the secondary control layer, thus the operational efficiency of microgrid can be improved. In addition, the proposed control strategy can be achieved in a fully distributed way, which shows the advantages of flexibility, robustness and scalability.
|
Received: 06 September 2020
|
|
|
|
|
[1] 涂春鸣, 黄红, 兰征, 等. 微电网中电力电子变压器与储能的协调控制策略[J]. 电工技术学报, 2019, 34(12): 2627-2636. Tu Chunming, Huang Hong, Lan Zheng, et al.Coordinated control strategy of power electronic transformer and energy storage in microgrid[J]. Transactions of China Electrotechnical Society, 2019, 34(12): 2627-2636. [2] 陈树泉, 张兆云, 李天利. 基于模糊下垂控制的直流微电网电压稳定控制研究[J]. 电气技术, 2020, 21(8): 40-45. Chen Shuquan, Zhang Zhaoyun, Li Tianli.Research on voltage control of DC microgrid based on fuzzy droop control[J]. Electrical Engineering, 2020, 21(8): 40-45. [3] 孟建辉, 邹培根, 王毅, 等. 基于灵活虚拟惯性控制的直流微网小信号建模及参数分析[J]. 电工技术学报, 2019, 34(12): 2615-2626. Meng Jianhui, Zou Peigen, Wang Yi, et al.Small-signal modeling and parameter analysis of the DC microgrid based on flexible virtual inertia control[J]. Transactions of China Electrotechnical Society, 2019, 34(12): 2615-2626. [4] 李建林, 牛萌, 周喜超, 等. 能源互联网中微能源系统储能容量规划及投资效益分析[J]. 电工技术学报, 2020, 35(4): 874-884. Li Jianlin, Niu Meng, Zhou Xichao, et al.Energy storage capacity planning and investment benefit analysis of micro-energy system in energy interconnection[J]. Transactions of China Electrotechnical Society, 2020, 35(4): 874-884. [5] Zhang Xing, Wang Mingda, Zhao Tao, et al.Topological comparison and analysis of medium-voltage and high-power direct-linked PV inverter[J]. CES Transactions on Electrical Machines and Systems, 2019, 3(4): 327-334. [6] Cook M, Parker G, Robinett R, et al.Decentralized mode-adaptive guidance and control for DC microgrid[J]. IEEE Transactions on Power Delivery, 2017, 32(1): 263-271. [7] 朱珊珊, 汪飞, 郭慧, 等. 直流微电网下垂控制技术研究综述[J]. 中国电机工程学报, 2018, 38(1): 72-84. Zhu Shanshan, Wang Fei, Guo Hui, et al.Overview of droop control in DC microgrid[J]. Proceedings of the CSEE, 2018, 38(1): 72-84. [8] 朱晓荣, 候顺达, 李铮. 基于模型预测控制的直流微电网电压动态响应优化[J]. 电网技术, 2020, 44(6): 2187-2195. Zhu Xiaorong, Hou Shunda, Li Zheng.Voltage dynamic response optimization of DC microgrid based on model predictive control[J]. Power System Technology, 2020, 44(6): 2187-21959. [9] Li Zhongwen, Cheng Zhiping, Liang Jing, et al.Distributed event-triggered secondary control for economic dispatch and frequency restoration control of droop-controlled AC microgrids[J]. IEEE Transactions on Sustainable Energy, 2020, 11(3): 1938-1950. [10] Messinis G, Gonzalez-Espin F, Valdivia V, et al.Application of rapid prototyping tools for a hierarchical microgrid control implementation[C]// 2014 IEEE 5th International Symposium on Power Electronics for Distributed Generation Systems, Galway, Ireland, 2014, DOI: 10.1109/PEDG.2014. 6878688. [11] 施永, 徐冬, 于鸿儒, 等. 基于系统辨识建模的微网二次电压频率控制器参数设计方法[J]. 电力系统自动化, 2020, 44(13): 89-97. Shi Yong, Xu Dong, Yu Hongru, et al.Parameter design method of secondary voltage and frequency regulation controller in microgrid based on system identification modeling[J]. Automation of Electric Power Systems, 2020, 44(13): 89-97. [12] 吴亮, 刘庆楷, 唐翀, 等. 微电网二次频率/电压控制器的反馈线性化设计及分布式实现[J]. 电力系统保护与控制, 2019, 47(14): 79-86. Wu Liang, Liu Qingkai, Tang Chong, et al.Design of secondary frequency/voltage controller with feedback linearization and distributed implemention in microgrids[J]. Power System Protection and Control, 2019, 47(14): 79-86. [13] Azevedo R, Cintuglu M, Ma T, et al.Multiagent-based optimal microgrid control using fully distributed diffusion strategy[J]. IEEE Transactions on Smart Grid, 2017, 8(4): 1997-2008. [14] 周晓倩, 艾芊. 配电网与多微网联合分布式鲁棒经济调度[J]. 电力系统自动化, 2020, 44(7): 23-30. Zhou Xiaoqian, Ai Qian.Combined distributed robust economic dispatch of distribution network and multiple microgrids[J]. Automation of Electric Power Systems, 2020, 44(7): 23-30. [15] 施静容, 李勇, 贺悝, 等. 一种提升交直流混合微电网动态特性的综合惯量控制方法[J]. 电工技术学报, 2020, 35(2): 337-345. Shi Jingrong, Li Yong, He Kui, et al.A comprehensive inertia control method for improving the dynamic characteristics of hybrid AC-DC microgrid[J]. Transactions of China Electrotechnical Society, 2020, 35(2): 337-345. [16] 曹文远, 韩民晓, 谢文强, 等. 交直流配电网逆变器并联控制技术研究现状分析[J]. 电工技术学报, 2019, 34(20): 4226-4241. Cao Wenyuan, Han Minxiao, Xie Wenqiang, et al.Analysis on research status of parallel inverters control technologies for AC/DC distribution network[J]. Transactions of China Electrotechnical Society, 2019, 34(20): 4226-4241. [17] Kakigano H, Miura Y, Ise T.Distribution voltage control for DC microgrids using fuzzy control and gain-scheduling technique[J]. IEEE Transactions on Power Electronics, 2013, 28(5): 2246-2258. [18] Wang Panbao, Lu Xiaonan, Yang Xu, et al.An improved distributed secondary control method for DC microgrids with enhanced dynamic current sharing performance[J]. IEEE Transactions on Power Electronics, 2016, 31(9): 6658-6673. [19] 陈刚, 李志勇, 韦梦立. 孤岛微电网的分布式固定时间二次协调控制[J]. 控制与决策, 2019, 34(1): 205-212. Chen Gang, Li Zhiyong, Wei Mengli.Distributed fixed-time secondary coordination control of islanded microgrids[J]. Control and Decision, 2019, 34(1): 205-212. [20] 肖湘宁, 王鹏, 陈萌. 基于分布式多代理系统的孤岛微电网二次电压控制策略[J]. 电工技术学报, 2018, 33(8): 1894-1902. Xiao Xiangning, Wang Peng, Chen Meng.Secondary voltage control in an islanded microgrid based on distributed multi-agent system[J]. Transactions of China Electrotechnical Society, 2018, 33(8): 1894-1902. [21] Anand S, Fernandes B, Guerrero J.Distributed control to ensure proportional load sharing and improve voltage regulation in low-voltage DC microgrids[J]. IEEE Transactions on Power Electronics, 2013, 28(4): 1900-1913. [22] Lu Xiaonan, Guerrero J, Sun K, et al.An improved droop control method for DC microgrids based on low bandwidth communication with DC bus voltage restoration and enhanced current sharing accuracy[J]. IEEE Transactions on Power Electronics, 2014, 29(4): 1800-1812. [23] Huang P H, Liu Pochun, Xiao Weidong, et al.A novel droop-based average voltage sharing control strategy for DC microgrids[J]. IEEE Transactions on Smart Grid, 2015, 6(3): 1096-1106. [24] 吴济东, 汪可友, 黄鑫, 等. 孤立直流微电网多DC-DC变换器分布式协调控制策略[J]. 电力系统保护与控制, 2020, 48(11): 76-83. Wu Jidong, Wang Keyou, Huang Xin, et al.Distributed coordinated control scheme of parallel DC-DC converters in isolated DC microgrids[J]. Power System Protection and Control, 2020, 48(11): 76-83. [25] 周敏, 吕振宇, 王琦, 等. 直流配电网换流站分布式有功-电压二级优化控制策略[J]. 中国电机工程学报, 2020, 40(24): 8002-8011. Zhou Min, Lü Zhenyu, Wang Qi, et al.Distributed secondary power and voltage optimal control strategy for converter station in DC distribution network[J]. Proceedings of the CSEE, 2020, 40(24): 8002-8011. [26] Xing Lantao, Mishra Y, Guo Fanghong, et al.Distributed secondary control for current sharing and voltage restoration in DC microgrid[J]. IEEE Transactions on Smart Grid, 2020, 3(11): 2487-2497. [27] 蒋科, 吴峰, 张新松, 等. 基于有限步一致性算法的交直流混联微电网分布式动态经济调度[J]. 南通大学学报(自然科学版), 2020, 19(1): 17-25. Jiang Ke, Wu Feng, Zhang Xinsong, et al.Dynamic economic dispatch of AC/DC microgrid based on the finite-step consensus algorithm[J]. Journal of Nantong University (Natural Science Edition), 2020, 19(1): 17-25. [28] Lü Zhenyu, Wu Zaijun, Dou Xiaobo, et al.Distributed economic dispatch scheme for droop-based autonomous DC microgrid[J]. Energies, 2020, 13(2): 404. [29] Vu T, Perkins D, Diaz F, et al.Robust adaptive droop control for DC microgrids[J]. Electric Power Systems Research, 2017, 146: 95-106. [30] Olfati-Saber R, Fax J, Murray R.Consensus and cooperation in networked multi-agent systems[J]. Proceedings of the IEEE, 2007, 95(1): 215-233. [31] Olfati-Saber R, Murray R.Consensus problems in networks of agents with switching topology and time-delays[J]. IEEE Transactions on Automatic Control, 2004, 47(9): 1520-1533. [32] Meyer C.Matrix analysis and applied linear algebra[M]. Philadelphia: Society for Industrial and Applied Mathematics, 2000. [33] 米阳, 宋根新, 蔡杭谊, 等. 基于分段下垂的交直流混合微电网自主协调控制[J]. 电网技术, 2018, 42(12): 3941-3950. Mi Yang, Song Genxin, Cai Hangyi, et al.Autonomous coordinated control of hybrid AC/DC microgrids based on segmented droop[J]. Power System Technology, 2018, 42(12): 3941-3950. [34] Nasirian V, Davoudi A, Lewis F.Distributed adaptive droop control for DC microgrids[C]//2014 IEEE Applied Power Electronics Conference and Exposition, Fort Worth, TX, USA, 2014: 1147-1152. [35] Hu Jian, Duan Jie, Ma Hao, et al.Distributed adaptive droop control for optimal power dispatch in DC microgrid[J]. IEEE Transactions on Industrial Electronics, 2018, 65(1): 778-789. [36] O'Dwyer A.PI and PID controller tuning rules: an overview and personal perspective[C]//2006 IET Irish Signals and Systems Conference, Dublin, Ireland, 2006: 161-166. [37] Zhang Wei, Liu Wenxin, Zang Chuanzhi, et al.Multiagent system-based integrated solution for topology identification and state estimation[J]. IEEE Transactions on Industrial Informatics, 2017, 13(2): 714-724. |
|
|
|