|
|
Performance Comparison and Analysis of All-Digital Adaptive Filter with Different Discrete Methods |
Liu Yajing, Duan Chao |
School of Electrical Engineering Beijing Jiaotong University Beijing 100044 China |
|
|
Abstract The Adaptive filter (AF) based on second-order generalized integrator (SOGI) is widely applied in power grid measurement, motor position/speed detection and estimation occasions. In the process of digital realization, the existence of unit delay and different discrete methods will degrade the performance of the system. Under the premise of considering the aforementioned factors, the stability, frequency offset, amplitude gain and orthogonality were used as quantitative indicators to evaluate the performance degradation of the digital AF. And then, the performance variation with carrier ratio was given to provide the theoretical basis for digital implementation of the adaptive filter. Simulation and experimental results verified the theoretical analysis.
|
Received: 23 May 2020
|
|
|
|
|
[1] Rodriguez P, Luna A, Ciobotaru M, et al.Advanced grid synchronization system for power converters under unbalanced and distorted operating con-ditions[C]//32nd Annual Conference on IEEE Indu-strial Electronics Society, Paris, France, 2006: 5173-5178. [2] Rodríguez P, Luna A, Candela I, et al.Grid synchronization of power converters using multiple second order generalized integrators[C]//34th Annual Conference of IEEE Industrial Electronics Society, Orlando, FL, USA, 2008: 755-760. [3] Rodríguez P, Luna A, Muñoz-Aguilar R S, et al. A stationary reference frame grid synchronization system for three-phase grid-connected power converters under adverse grid conditions[J]. IEEE Transactions on Power Electronics, 2012, 27(1): 99-112. [4] 胥芳, 王坚锋, 潘国兵, 等. LCL型有源滤波器混合状态反馈虚拟阻尼控制策略[J]. 电工技术学报, 2019, 34(23): 5014-5022. Xu Fang, Wang Jianfeng, Pan Guobing, et al.LCL active power filter based on hybird states feedback virtual damping control strategy[J]. Transactions of China Elecrotechnical Society, 2019, 34(23): 5014-5022. [5] 顾长彬, 王琛琛, 王堃, 等. 单相PWM整流器虚拟矢量控制策略[J]. 电工技术学报, 2019, 34(增刊1): 202-211. Gu Changbin, Wang Chenchen, Wang Kun, et al.Analysis on virtual vector control schemes for single-phase PWM converter based on orthogonal signals generators[J]. IEEE Transactions on Power Electronics, 2019, 34(S1): 202-211. [6] 赵仁德, 赵斌, 徐海亮, 等. 带LC滤波器的永磁同步电机控制系统及策略研究[J]. 电工技术学报, 2019, 34(增刊1): 79-86. Zhao Rende, Zhao Bin, Xu Hailiang, et al.Research on control method of permanent magnet synchronous motor with LC filter[J]. Transactions of China Elec-trotechnical Society, 2019, 34(S1): 79-86. [7] Wang Gaolin, Li Ding, Li Zhuomin, et al.Enhanced position observer using second-order generalized integrator for sensorless interior permanent magnet synchronous motor drives[J]. IEEE Transactions on Energy Conversion, 2014, 29(2): 486-495. [8] Ye Shuaichen.Fuzzy sliding mode observer with dual SOGI-FLL in sensorless control of PMSM drives[J]. ISA Transactions, 2019, 85: 161-176. [9] 周臻, 李长磊, 王永. 基于复合二阶广义积分器的永磁同步电机转子位置与转速估计[J]. 电工技术学报, 2017, 32(7): 59-66. Zhou Zhen, Li Changlei, Wang Yong.Position and speed estimation for a permanent magnet syn-chronous motor rotor using composite second order generalized integrator[J]. Transactions of China Electrotechnical Society, 2017, 32(7): 59-66. [10] 刘兵, 周波, 倪天恒, 等. 基于广义二阶积分器的表贴式永磁同步电机低速转子位置检测方法[J]. 电工技术学报, 2017, 32(23): 23-33. Liu Bing, Zhou Bo, Ni Tianheng, et al.A novel position observer for SPMSM sensorless control based on second-order generalized integrators[J]. Transactions of China Electrotechnical Society, 2017, 32(23): 23-33. [11] 辛振, 赵仁德, 郭宝玲, 等. 基于广义二阶积分器-锁频环的异步电机同步角频率估计方法[J]. 电工技术学报, 2014, 29(1): 116-122. Xin Zhen, Zhao Rende, Guo Baoling, et al.New induction motor synchronous angular frequency estimation method based on second order generalized integrator-frequency locked loop[J]. Transactions of China Electrotechnical Society, 2014, 29(1): 116-122. [12] Xin Zhen, Zhao Rende, Blaabjerg F, et al.An improved flux observer for field-oriented control of induction motors based on dual second-order gen-eralized integrator frequency-locked loop[J]. IEEE Journal of Emerging and Select Topics in Power Electronics, 2017, 5(1): 513-525. [13] Rodriguez F J, Bueno E, Aredes M, et al.Discrete time implementation of second order generalized integrators for grid converters[C]//34th Annual Conference of IEEE Industrial Electronics, Orlando, FL, USA, 2008: 176-181. [14] Harnefors L.Implementation of resonant controllers and filters in fixed-point arithmetic[J]. IEEE Transa-ctions on Industrial Electronics, 2009, 56(4): 1273-1281. [15] Yepes A G, Freijedo F D, Lopez Ó, et al.High performance digital resonant controllers implement-ed with two integrators[J]. IEEE Transactions on Power Electronics, 2011, 26(2): 563-576. [16] Khajehoddin S A, Karimi-Ghartemani M, Jain P K, et al.A resonant controller with high structural robu-stness for fixed-point digital implementations[J]. IEEE Transactions on Power Electronics, 2012, 27(7): 3352-3362. [17] Alejandro G Y, Francisco D F, Jesús D G, et al.Effects of discretization methods on the perform-ance of resonant controllers[J]. IEEE Transactions on Power Electronics, 2010, 25(7): 1692-1712. [18] 杨才伟, 王剑, 游小杰, 等. 二阶广义积分器锁频环数字实现准确性对比[J]. 电工技术学报, 2019, 34(12): 2584-2596. Yang Caiwei, Wang Jian, You Xiaojie, et al.Accuracy comparison of digital implementation on the second-order generalized integrator frequency-locked loop[J]. Transactions of China Elecro-technical Society, 2019, 34(12): 2584-2596. [19] 刘亚静, 范瑜. 全数字硬件化正交锁相环建模与分析[J]. 电工技术学报, 2015, 30(15): 148-155. Liu Yajing, Fan Yu.Modeling and analysis of all-digital full-hardware quadrature phase-locked loop[J]. Transactions of China Electrotechnical Society, 2015, 30(15): 148-155. [20] 刘亚静, 范瑜. 全数字硬件化锁相环参数分析与设计[J]. 电工技术学报, 2015, 30(2): 172-179. Liu Yajing, Fan Yu.Design and analysis of all-digital full-hardware phase-locked loop[J]. Transactions of China Electrotechnical Society, 2015, 30(2): 172-179. [21] 孙高阳, 刘亚静, 李秉格, 等. 一种消除反馈延迟的全数字锁相环[J]. 电工技术学报, 2017, 32(20): 171-178. Sun Gaoyang, Liu Yajing, Li Bingge, et al.An all-digital phase-locked loop with compensating feed-back unit delay[J]. Transactions of China Elecro-technical Society, 2017, 32(20): 171-178. |
|
|
|