|
|
An Iterative Learning Control Based on Improved Multiple Input and Multiple Output Model Free Adaptive Control for Two-Dimensional Linear Motor |
Cao Rongmin1, Zheng Xinxin1, Hou Zhongsheng2 |
1. School of Automation Beijing Information Science and Technology University Beijing 100192 China; 2. School of Automation Qingdao University Qingdao 266071 China |
|
|
Abstract In actual operation for two-dimensional linear motor, there are some unmodeled dynamic control problems, such as strong coupling, unknown nonlinearity, and easy to be affected by exogenous disturbances. Based on the fact that the model free adaptive control (MFAC) does not depend on the system precise mathematical model and iterative learning control (ILC) is a progressive learning rule, an improved model free adaptive control with multiple input and multiple output (MIMO)-MFAC iterative learning control (ILC) compound scheme was proposed for two-dimensional linear motor. The first order difference element was added to the input criterion function of MFAC, which makes the improved MIMO-MFAC feedback controller have strong robustness. The ILC feedforward controller can reject exogenous disturbances and compensate system nonlinearity, feedforward and feedback are complementary to each other to achieve the accuracy compensation for the desired output, and further reduce the position tracking error. Finally, the two-dimensional linear motor motion platform is combined with LINKS-RT hardware in the loop simulation system, the effectiveness of the proposed scheme is proved by practical experiments.
|
Received: 28 June 2020
|
|
|
|
|
[1] 武志涛, 杨永辉. 一种永磁直线电机驱动X-Y平台精密轮廓跟踪控制策略[J]. 电工技术学报, 2018, 33(17): 4037-4043. Wu Zhitao, Yang Yonghui.A precise ontour tracking control method for X-Y table driven by permanent magnet linear motors[J]. Transactions of China Electrotechnical Society, 2018, 33(17): 4037-4043. [2] Yao Bin, Hu Chuxiong, Lu Lu, et al.Adaptive robust precision motion control of a high-speed industrial gantry with cogging force compensations[J]. IEEE Transactions on Control Systems Technology, 2011, 19(5): 1149-1159. [3] Iwasaki M, Seki K, Maeda Y.High-precision motion control techniques: a promising approach to improving motion performance[J]. IEEE Industrial Electronics Magazine, 2012, 6(1): 32-40. [4] Huang W S, Liu C W, Hsu P L, et al.Precision control and compensation of servomotors and machine tools via the disturbance observer[J]. IEEE Transactions on Industrial Electronics, 2009, 57(1): 420-429. [5] Hu Chuxiong, Yao Bin, Wang Qingfeng.Adaptive robust precision motion control of systems with unknown input dead-zones: a case study with comparative experiments[J]. IEEE Transactions on Industrial Electronics, 2011, 58(6): 2454-2464. [6] 金鸿雁, 赵希梅. 基于Sugeno型模糊神经网络和互补滑模控制器的双直线电机伺服系统同步控制[J].电工技术学报, 2019, 34(13): 2726-2733. Jin Hongyan, Zhao Ximei.Dual linear motors servo system synchronization control based on sugeno type fuzzy neural network and complementary sliding mode controller[J]. Transactions of China Electrotechnical Society, 2019, 34(13): 2726-2733. [7] 赵希梅, 原浩, 朱文彬. 基于小波神经网络和非线性扰动观测器的直线伺服系统控制[J]. 电工技术学报, 2019, 34(19): 3989-3996. Zhao Ximei, Yuan Hao, Zhu Wenbin.Control of linear servo system based on wavelet neural network and nonlinear disturbance observer[J]. Transactions of China Electrotechnical Society, 2019, 34(19): 3989-3996. [8] 付东学, 赵希梅. 基于径向基函数神经网络的永磁直线同步电机反推终端滑模控制[J]. 电工技术学报, 2020, 35(12): 2545-2553. Fu Dongxue, Zhao Ximei.Backstepping terminal sliding mode control based on radial basis function neural network for permanent magnet linear synchro-nous motor[J]. Transactions of China Electrotechnical Society, 2020, 35(12): 2545-2553. [9] Giap N H, Shin J H, Kim W H.Robust adaptive neural network control for XY table[J]. Intelligent Control and Automation, 2013, 4(3): 293-300. [10] Wang Limei, Sun Lu.Improved robust iterative learning control for direct drive XY platform[J]. Journal of Electric Machines and Control, 2016, 20(9): 1-8. [11] Jian Yupei, Huang Deqing, Liu Jiabin, et al.High-precision tracking of piezoelectric actuator using iterative learning control and direct inverse compensation of hysteresis[J]. IEEE Transactions on Industrial Electronics, 2019, 66(1): 368-377. [12] Zhou Shengfeng, Chen Mou, Ong Chong-jin, et al.Adaptive neural network control of uncertain MIMO nonlinear systems with input saturation[J]. Neural Computing Applications, 2016, 27(5): 1317-1325. [13] 侯忠生, 金尚泰. 无模型自适应控制:理论与应用[M]. 北京: 科学出版社, 2013. [14] 侯忠生, 许建新. 数据驱动控制理论及方法的回顾和展望[J]. 自动化学报, 2009, 35(6): 650-667. Hou Zhongsheng, Xu Jianxin.Review and prospect of data driven control theory and method[J]. Journal of Automation, 2009, 35(6): 650-667. [15] 曹荣敏, 周惠兴, 侯忠生. 数据驱动的无模型自适应直线伺服系统精密控制和实现[J]. 控制理论与应用, 2012, 29(3): 310-316. Cao Rongmin, Zhou Huixing, Hou Zhongsheng.Data-driven model-free adaptive precision control for linear servo system[J]. Control Theory & Applications, 2012, 29(3): 310-316. [16] 张宝林, 曹荣敏, 侯忠生. 二维直线电机实时轮廓误差估计及无模型控制[J]. 电气传动, 2021, 50(12): 77-82. Zhang Baolin, Cao Rongmin, Hou Zhongsheng.Real-time contour error estimation and model-free control for two-dimensional linear motor[J]. Electric Drive, 2021, 50(12): 77-82. [17] 曾子强, 曹荣敏, 侯忠生, 等. 二维直线电机的多入多出无模型自适应轮廓控制[J]. 控制理论与应用, 2020, 37(5): 1007-1017. Zeng Ziqiang, Cao Rongmin, Hou Zhongsheng, et al.Multiple input multiple output model free adaptive contour control for two-dimensional linear motor[J]. Control Theory & Applications, 2020, 37(5): 1007-1017. [18] 孙明轩, 黄宝健.迭代学习控制理论[M]. 北京: 国防工业出版社, 1999. [19] Tan K K, Lee T H, Lim S Y, et al.Learning enhanced motion control of permanent magnet linear motor[C]// IFAC Workshop on Motion Control, Grenoble, France, 1998: 359-364. [20] Hu Chuxiong, Yao Bin, Wang Qingfeng.Adaptive robust precision motion control of systems with unknown input dead-zones: a case study with comparative experiments[J]. IEEE Transactions on Industrial Electronics, 2011, 58(6): 2454-2464. [21] 付东学, 赵希梅. 永磁直线同步电机自适应反推全局快速终端滑模控制[J]. 电工技术学报, 2020, 35(8): 1634-1641. Fu Dongxue, Zhao Ximei.Backstepping terminal sliding mode control based on radial basis function neural network for permanent magnet linear synchronous motor[J]. Transactions of China Electrotechnical Society, 2020, 35(8): 1634-1641. [22] 原浩, 赵希梅. 基于全局任务坐标系的直驱XY平台学习互补滑模轮廓控制[J]. 电工技术学报, 2020, 35(10): 2141-2148. Yuan Hao Zhao Ximei. Learning complementary lliding mode contouring control based on global task coordinate frame for direct drive XY table[J]. Transactions of China Electrotechnical Society, 2020, 35(10): 2141-2148. [23] Tan K K, Lee T H, Huang S N.Precision motion control: design and implementation[M]. Berlin: Springer Science & Business Media, 2007. |
|
|
|