|
|
Frequency Response Characteristics and Adaptive Parameter Tuning of Voltage-Sourced Converters under VSG Control |
Yan Xiangwu1, Zhang Weichao1, Cui Sen1, Huang Hanyan2, Li Tiecheng3 |
1. Key Laboratory of Distributed Energy Storage and Micro-Grid of Hebei Province North China Electric Power University Baoding 071000 China; 2. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources;North China Electric Power University Beijing 102206 China; 3. Hebei Electric Power Research Institute Shijiazhuang 050021 China |
|
|
Abstract With the increasing penetration of renewable generation and the consequent displacement of synchronous generators, the intrinsic characteristics of modern power systems have been through an evolving transition which brought frequency stability challenges. The power electronic-based renewable generation (such as the solar PV and wind turbines), commonly exploiting maximum available generation capacity in normal operating condition, brings issues weakening the entire system, including the loss of inertia because of high-frequency switches and the decreasing number of frequency response participants taking part in system-level power balance control. Under this background, the concept of virtual synchronous generator (VSG) has been proposed, which mimics the external characteristics of traditional electric machines, to provide inertial response and primary frequency response from the renewable generation, aiming to sustain frequency stability against disturbances. Moreover, as the parameters of VSG control loops is fully adjustable, the response time and flexibility can be enhanced by adaptive parameter tuning. This paper presents a parameter tuning method adaptive to load deviations. Firstly, the VSG control strategy providing the inertial response and primary frequency response is introduced. Secondly, the performance indices of frequency response are deduced through simplifications from transfer function. Thirdly, an adaptive parameter tuning algorithm is designed considering the composite influence on performance indices, the chronological sequence, and the renewable generation properties. At last, the feasibility of the proposed algorithm is verified by simulation.
|
Received: 20 June 2020
|
|
|
|
|
[1] Yan Xiangwu, Zhang Weichao.Review of VSG control-enabled universal compatibility architecture for future power systems with high-penetration rene- wable generation[J]. Applied Sciences, 2019, 9(7): 1484. [2] Lopes J A P, Hatziargyriou N, Mutale J, et al. Integrating distributed generation into electric power systems: a review of drivers, challenges and opportu- nities[J]. Electric Power Systems Research, 2007, 77(9): 1189-1203. [3] 颜湘武, 徐韵. 考虑网络动态重构含多异质可再生分布式电源参与调控的配电网多时空尺度无功优化[J]. 电工技术学报, 2019, 34(20): 4358-4372. Yan Xiangwu, Xu Yun.Multiple time and space scale reactive power optimization for distribution network with multi-heterogeneous RDG participating in regulation and considering network dynamic recon- figuration[J]. Transactions of China Electrotechnical Society, 2019, 34(20): 4358-4372. [4] Lo Piano S, Mayumi K.Toward an integrated assessment of the performance of photovoltaic power stations for electricity generation[J]. Applied Energy, 2017, 186: 167-174. [5] Zhang Weichao, Liang Haifeng, Bin Zhou, et al.Review of DC technology in future smart distribution grid[C]//IEEE PES Innovative Smart Grid Tech- nologies, Tianjin, China, 2012: 1-4. [6] Guarnieri M.More light on information [historical][J]. IEEE Industrial Electronics Magazine, 2015, 9(4): 58-61. [7] Falahi G, Huang A.Low voltage ride through control of modular multilevel converter based HVDC systems[C]//IECON 2014-40th Annual Conference of the IEEE Industrial Electronics Society, Dallas, TX, USA, 2014: 4663-4668. [8] Cheng Ming, Zhu Ying.The state of the art of wind energy conversion systems and technologies: a review[J]. Energy Conversion and Management, 2014, 88: 332-347. [9] CWEA. Statistical brief of wind power lifting capacity in China in 2018[EB/OL]. http://www.cwea. org.cn/news_lastest_detail.html?id=217 (accessed on 31, December, 2019. [10] U. S. Energy information administration. annual energy outlook2019[EB/OL]. https://www.eia.gov/ outlooks/aeo/pdf/aeo2019.pdf (accessed on 31, December, 2019). [11] BP. BP energy outlook2018[EB/OL]. https://www. bp.com/en/global/corporate/energyeconomics/energyoutlook.html (accessed on 31, December, 2019). [12] Zhong Qingchang.Power-electronics-enabled auto- nomous power systems: architecture and technical routes[J]. IEEE Transactions on Industrial Electronics, 2017, 64(7): 5907-5918. [13] Huang Hanyan, Zhou Ming, Li Gengyin.An endo- genous approach to quantifying the wind power reserve[J]. IEEE Transactions on Power Systems, 2020, 35(3): 2431-2442. [14] Delille G, Francois B, Malarange G.Dynamic fre- quency control support by energy storage to reduce the impact of wind and solar generation on isolated power system's inertia[J]. IEEE Transactions on Sustainable Energy, 2012, 3(4): 931-939. [15] Rocabert J, Luna A, Blaabjerg F, et al.Control of power converters in AC microgrids[J]. IEEE Transa- ctions on Power Electronics, 2012, 27(11): 4734-4749. [16] Peng Fangzheng, Li Yunwei, Tolbert L M.Control and protection of power electronics interfaced distributed generation systems in a customer-driven microgrid[C]//Proceedings of the IEEE Power Energy Society General Meeting, Calgary, AB, Canada, 2009: 1-8. [17] Chiang S J, Yen C Y, Chang K T.A multimodule parallelable series-connected PWM voltage regulator[J]. IEEE Transactions on Industrial Electronics, 2001, 48(3): 506-516. [18] Yu Xiaoxiao, Khambadkone A M, Wang Huanhuan, et al.Control of parallel-connected power converters for low-voltage microgrid-part I: a hybrid control architecture[J]. IEEE Transactions on Power Elec- tronics, 2010, 25(12): 2962-2970. [19] Vilathgamuwa D M, Loh P C, Li Y.Protection of microgrids during utility voltage sags[J]. IEEE Transactions on Industrial Electronics, 2006, 53(5): 1427-1436. [20] Chowdhury S, Chowdhury S P, Crossley P.Micro- grids and active distribution networks[M]. UK, London: Institution of Engineering and Technology, 2009. [21] Beck H P, Hesse R.Virtual synchronous machine[C]// Proceedings of the 9th International Confeference Electrical Power Quality Utilisation, Barcelona, Spain, 2007: 1-6. [22] Driesen J, Visscher K.Virtual synchronous gener- ators[C]//Proceedings of the IEEE Power Energy Society General Meeting-Conversion and Delivery of Electrical Energy 21st Century, Pittsburgh, PA, USA, 2008: 1-3. [23] Zhong Qingchang, Weiss G.Synchronverters: inver- ters that mimic synchronous generators[J]. IEEE Transactions on Industrial Electronics, 2011, 58(4): 1259-1267. [24] Wu Heng, Ruan Xinbo, Yang Dongsheng, et al.Small-signal modeling and parameters design for virtual synchronous generators[J]. IEEE Transactions on Industrial Electronics, 2016, 63(7): 4292-4303. [25] Liu Jia, Miura Y, Ise T.Comparison of dynamic characteristics between virtual synchronous generator and droop control in inverter-based distributed generators[J]. IEEE Transactions on Power Electro- nics, 2016, 31(5): 3600-3611. [26] D'Arco S, Suul J A. Equivalence of virtual synchronous machines and frequency-droops for converter-based micro grids[J]. IEEE Transactions on Smart Grid, 2014, 5(1): 394-395. [27] 颜湘武, 贾焦心, 王德胜, 等. 基于P/ω“导纳”的并联虚拟同步机功频响应建模与分析[J]. 电工技术学报, 2020, 35(15): 3191-3202. Yan Xiangwu, Jia Jiaoxin, Wang Desheng, et al.Modeling and analysis of active power-frequency response of parallel VSGs using a P/ω “admittance”[J]. Transactions of China Electrotechnical Society, 2020, 35(15): 3191-3202. [28] 颜湘武, 宋子君, 崔森, 等. 基于变功率点跟踪和超级电容器储能协调控制的双馈风电机组一次调频策略[J]. 电工技术学报, 2020, 35(3): 530-541. Yan Xiangwu, Song Zijun, Cui Sen, et al.Primary frequency regulation strategy of doubly-fed wind turbine based on variable power point tracking and supercapacitor energy storage[J]. Transactions of China Electrotechnical Society, 2020, 35(3): 530-541. [29] Hirase Y, Sugimoto K, Sakimoto K, et al.Analysis of resonance in microgrids and effects of system frequency stabilization using a virtual synchronous generator[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2016, 4(4): 1287-1298. [30] 叶一达, 魏林君, 阮佳阳, 等. 电力电子接口电源的准功率特性降阶建模体系[J]. 中国电机工程学报, 2017, 37(14): 3993-4001. Ye Yida, Wei Linjun, Ruan Jiayang, et al.A generic reduced-order modeling hierarchy for power- electronic interfaced generators with the quasi- constant-power feature[J]. Proceedings of the CSEE, 2017, 37(14): 3993-4001. [31] 吴恒, 阮新波, 杨东升, 等. 虚拟同步发电机功率环的建模与参数设计[J]. 中国电机工程学报, 2015, 35(24): 6508-6518. Wu Heng, Ruan Xinbo, Yang Dongsheng, et al.Modeling of the power loop and parameter design of virtual synchronous generators[J]. Proceedings of the CSEE, 2015, 35(24): 6508-6518. [32] Chen Xinran, Ruan Xinbo, Yang Dongsheng, et al.Step-by-step controller design of voltage closed-loop control for virtual synchronous generator[C]//2015 IEEE Energy Conversion Congress and Exposition (ECCE), Montreal, QC, Canada, 2015: 3760-3765. [33] GB/T 38983.1-2020 虚拟同步机第1部分: 总则[S]. 北京: 国家市场监督管理总局、中国国家标准化管理委员会, 2020. [34] 颜湘武, 吕佳伟, 贾焦心, 等. 双级式有功备用光伏虚拟同步机控制策略[J]. 电力系统保护与控制, 2020, 48(15): 61-68. Yan Xiangwu, Lü Jiawei, Jia Jiaoxin, et al.Two- stage active standby photovoltaic virtual synchronous machine control strategy[J]. Power System Protection and Control, 2020, 48(15): 61-68. [35] 高建瑞, 李国杰, 汪可友, 等. 考虑储能充放电功率限制的并网光储虚拟同步机控制[J]. 电力系统自动化, 2020, 44(4): 134-141. Gao Jianrui, Li Guojie, Wang Keyou, et al.Control of grid-connected PV-battery virtual synchronous machine considering battery charging/discharging power limit[J]. Automation of Electric Power Systems, 2020, 44(4): 134-141. [36] 鲁宗相, 叶一达, 郭莉, 等. 电力电子化电力系统的调频挑战与多层级协调控制框架[J]. 中国电力, 2019, 52(4): 8-17, 110. Lu Zongxiang, Ye Yida, Guo Li, et al.Frequency regulation challenge of power electronics dominated power systems and its new multi-level coordinated control framework[J]. Electric Power, 2019, 52(4): 8-17, 110. [37] 施静容, 李勇, 贺悝, 等. 一种提升交直流混合微电网动态特性的综合惯量控制方法[J]. 电工技术学报, 2020, 35(2): 337-345. Shi Jingrong, Li Yong, He Li, et al.A comprehensive inertia control method for improving the dynamic characteristics of hybrid AC-DC microgrid[J]. Transactions of China Electrotechnical Society, 2020, 35(2): 337-345. [38] 李颖颖, 王德林, 范林源, 等. 双馈风电机组限功率运行下频率稳定的变系数控制策略[J]. 电网技术, 2019, 43(8): 2910-2917. Li Yingying, Wang Delin, Fan Linyuan, et al.Variable coefficient control strategy for frequency stability of DFIG under power-limited operation[J]. Power System Technology, 2019, 43(8): 2910-2917. [39] 颜湘武, 崔森, 常文斐. 考虑储能自适应调节的双馈感应发电机一次调频控制策略[J]. 电工技术学报, 2021, 36(5): 1027-1039. Yan Xiangwu, Cui Sen, Chang Wenfei.Primary frequency regulation control strategy of doubly-fed induction generator considering supercapacitor SOC feedback adaptive adjustment[J]. Transactions of China Electrotechnical Society, 2021, 36(5): 1027-1039. [40] Fan Bo, Peng Jiangkai, Duan Jiajun, et al.Distributed control of multiple-bus microgrid with paralleled distributed generators[J]. IEEE/CAA Journal of Automatica Sinica, 2019, 6(3): 676-684. [41] Duan Jiajun, Wang Cheng, Xu Hao, et al.Distributed control of inverter-interfaced microgrids with bounded transient line currents[J]. IEEE Transactions on Industrial Informatics, 2018, 14(5): 2052-2061. [42] Torres L M A, Lopes L A C, Moran T L A, et al. Self-tuning virtual synchronous machine: a control strategy for energy storage systems to support dynamic frequency control[J]. IEEE Transactions on Energy Conversion, 2014, 29(4): 833-840. [43] Li Dongdong, Zhu Qianwei, Lin Shunfu, et al.A self-adaptive inertia and damping combination control of VSG to support frequency stability[J]. IEEE Transactions on Energy Conversion, 2017, 32(1): 397-398. [44] Alipoor J, Miura Y, Ise T.Power system stabilization using virtual synchronous generator with alternating moment of inertia[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2015, 3(2): 451-458. [45] Fang Jingyang, Li Hongchang, Tang Yi, et al.Distributed power system virtual inertia implemented by grid-connected power converters[J]. IEEE Transa- ctions on Power Electronics, 2018, 33(10): 8488-8499. [46] Stephen J C.Electric machinery fundamentals[M]. New York: McGraw-Hill Education, 2012. [47] Umans S D.Fitzgerald and Kingsley’s electric machinery-7th ed[M]. New York, NY, USA: McGraw- Hill, 2013. [48] Anderson P, Fouad A.Power system control and stability[M]. New Jersey: John Wiley & Sons, 2008. [49] Kundur P.Power system stability and control[M]. New York, NY, USA: McGrawHill, 1993. [50] Zhang Weichao, Yan Xiangwu.Equivalence analysis of virtual synchronous machines and frequency- droops for inertia emulation in power systems with converter-interfaced renewables[J]. Journal of Elec- trical Engineering & Technology, 2020, 15(3): 1167-1175. [51] D’Arco S, Suul J A. Virtual synchronous machines- classification of implementations and analysis of equivalence to droop controllers for microgrid[C]// Proceedings of the IEEE Powertech Grenoble Con- ference, Grenoble, France, 2013: 1-7. [52] Zhang Weichao, Yan Xiangwu, Huang Hanyan.Performance tuning for power electronic interfaces under VSG control[J]. Applied Sciences, 2020, 10(3): 953. [53] Zhang Weichao, Yan Xiangwu, Huang Hanyan.Emulation strategies and economic dispatch for inverter-based renewable generation under VSG control participating in multiple temporal frequency control[J]. Applied Sciences, 2020, 10(4): 1303. [54] Franklin G F, Powell J D, Emami-Naeini A.Feedback control of dynamic system, 7th ed[M]. Upper Saddle River, NJ, USA: Pearson Prentice Hall, 2014. [55] Ullah N R, Thiringer T, Karlsson D.Voltage and transient stability support by wind farms complying with the E.ON Netz grid code[J]. IEEE Transactions on Power Systems, 2007, 22(4): 1647-1656. [56] Prakash V, Bhakar R, Tiwari1 H, et al. Inertia and primary frequency response assessment under uncertain photovoltaic generation[C]//Proceedings of the 2018 8th IEEE India International Conference on Power Electronics (IICPE), Jaipur, India, 2018: 1-6. [57] Frack P F, Mercado P E, Molina M G, et al.Control strategy for frequency control in autonomous micro- grids[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2015, 3(4): 1046-1055. [58] 颜湘武, 邓浩然, 郭琪, 等. 基于自适应无迹卡尔曼滤波的动力电池健康状态检测及梯次利用研究[J]. 电工技术学报, 2019, 34(18): 3937-3948. Yan Xiangwu, Deng Haoran, Guo Qi, et al.Study on the state of health detection of power batteries based on adaptive unscented Kalman filters and the battery echelon utilization[J]. Transactions of China Electro- technical Society, 2019, 34(18): 3937-3948. |
|
|
|