|
|
Flux Weakening Control of Variable Flux Reluctance Machine Considering Resistive Voltage Drops in Armature and Zero-Sequence Loop |
Guo Jiaqiang1,2, Liu Xu1,2, Li Shanhu1,2 |
1. State Key Laboratory of Reliability and Intelligence of Electrical Equipment Hebei University of Technology Tianjin 300130 China; 2. Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province Hebei University of Technology Tianjin 300130 China |
|
|
Abstract In the flux-weakening control of VFRM (Variable Flux Reluctance Machine, VFRM), ignoring the resistive voltage drops will influence the calculation of the reference current, which results in current loop saturation and the reference current cannot be followed. In this case, the output power of VFRM in flux-weakening region will be limited. To solve this problem, a flux-weakening control strategy considering the resistive voltage drops in armature and zero-sequence loop is proposed. Firstly, based on the voltage equation of VFRM and the constraints of voltage and current, the equations of the optimal reference current considering the resistive voltage drop was deduced by the Lagrange method. Then, the optimal reference current was calculated by the Newton-Raphson method according to the current state of VFRM. After considering the resistive voltage drop, the calculation accuracy of the reference current is improved, which is conducive to the stable operation of the VFRM in the flux-weakening region. Finally, the effectiveness of the method is verified by the experimental results.
|
Received: 02 June 2020
|
|
|
|
|
[1] Zhu Ziqiang, Liu Xu.Novel stator electrically field excited synchronous machines without rare-earth magnet[C]//Ninth International Conference on Ecolo-gical Vehicles & Renewable Energies, Monte-Carlo, Monaco, 2014: 1-13. [2] Liu Xu, Zhu Ziqiang, Wu Di.Evaluation of efficiency optimized variable flux reluctance machine for EVs/ HEVs by comparing with interior PM machine[C]// International Conference on Electrical Machines & Systems, Hangzhou, China, 2014: 2648-2654. [3] Liu Xu, Zhu Ziqiang.Comparative study of novel variable flux reluctance machines with doubly fed doubly salient machines[J]. IEEE Transactions on Magnetics, 2013, 49(7): 3838-3841. [4] Zhu Ziqiang, Lee B, Liu Xu.Integrated field and armature current control strategy for variable flux reluctance machine using open winding[J]. IEEE Transactions on Industry Applications, 2016, 52(2): 1519-1529. [5] 陈轶涵, 郭鸿浩, 陈杰, 等. 中频三相四桥臂逆变器控制策略不平衡负载状态相量模型分析[J]. 电工技术学报, 2019, 34(9): 1912-1923. Chen Yihan, Guo Honghao, Chen Jie, et al.Analysis on control strategies for unsymmetrical state of medium frequency three phase four leg inverter based on vector model[J]. Transactions of China Electro-technical Society, 2019, 34(9): 1912-1923. [6] 翁汉琍, 刘雷, 林湘宁, 等. 涌流引起换流变压器零序过电流保护误动的机理分析及对策[J]. 电力系统自动化, 2019, 43(9): 171-182. Weng Hanli, Liu Lei, Lin Xiangning, et al.Mechanism and countermeasures of mal-operation of converter transformer zero-sequence overcurrent protection caused by inrush current[J]. Automation of Electric Power Systems, 2019, 43(9): 171-182. [7] 郭倩雯, 莫文雄, 郑方晴, 等. 高压内置型变压器空投导致零序电流保护误动分析及对策[J]. 电力系统保护与控制, 2018, 46(22): 170-176. Guo Qianwen, Mo Wenxiong, Zheng Fangqing, et al.Analysis and measures of zero sequence current protection malfunction caused by no-load high-voltage built-in transformer[J]. Power System Protection and Control, 2018, 46(22): 170-176. [8] 林志超, 刘鑫星, 王英民, 等. 基于零序电流比较的小电阻接地系统接地故障保护[J]. 电力系统保护与控制, 2018, 46(22): 21-27. Lin Zhichao, Liu Xinxing, Wang Yingmin, et al.Grounding fault protection based on zero-sequence current comparison in low resistance grounding system[J]. Power System Protection and Control, 2018, 46(22): 21-27. [9] 桂林, 李岩军, 詹荣荣, 等. 大型调相机内部故障特征及纵向零序电压保护性能分析[J]. 电力系统自动化, 2019, 43(8): 145-149. Gui Lin, Li Yanjun, Zhan Rongrong, et al.Analysis of internal fault characteristics and longitudinal zero-sequence overvoltage protection performance of large-scale condenser[J]. Automation of Electric Power Systems, 2019, 43(8): 145-149. [10] 张广儒, 杨勇, 刘丽娟, 等. 光伏电站送出线路零序保护异常动作分析[J]. 电气技术, 2019, 20(1): 93-96. Zhang Guangru, Yang Yong, Liu Lijuan, et al.Analysis of zero sequence protection action abnor-mally for photovoltaic power station transmission line[J]. Electrical Engineering, 2019, 20(1): 93-96. [11] 叶吉亮, 李岚, 刘海霞, 等. 电网电压不平衡及谐波状态下的并网逆变器控制策略[J]. 电力系统保护与控制, 2018, 46(6): 113-119. Ye Jiliang, Li Lan, Liu Haixia, et al.Control strategy of grid-connected inverter under unbalanced and harmonic voltage condition[J]. Power System Pro-tection and Control, 2018, 46(6): 113-119. [12] Shivakumar E G, Gopakumar K, Sinha S K, et al.Ranganathan, space vector PWM control of dual inverter fed open-end winding induction motor drive[C]//Applied Power Electronics Conference (APEC), Anaheim, CA, USA, 2001: 9-18. [13] 袁渊, 朱孝勇, 左月飞, 等. 共直流母线开绕组电机的移相解耦控制策略[J]. 电工技术学报, 2019, 34(22): 4670-4677. Yuan Yuan, Zhu Xiaoyong, Zuo Yuefei, et al.Decoupled SVPWM control strategy for open winding permanent magnet synchronous motor with common DC bus[J]. Transactions of China Electro-technical Society, 2019, 34(22): 4670-4677. [14] 莫为, 汪梅, 莫会成. 不同转子结构对永磁交流伺服电机弱磁特性影响[J]. 电工技术学报, 2018, 33(增刊1): 89-98. Mo Wei, Wang Mei, Mo Huicheng.Influence of different rotor structure on flux-weakening properties of permanent magnet AC servo motor[J]. Transa-ctions of China Electrotechnical Society, 2018, 33(S1): 89-98. [15] 朱永彬, 林珍. 电动汽车用永磁同步电动机弱磁研究综述[J]. 电气技术, 2015, 16(10): 1-7. Zhu Yongbin, Lin Zhen.Summarization for flux-weakening performance of permanent magnet synchronous motors applied in electric vehicle[J]. Electrical Engineering, 2015, 16(10): 1-7. [16] Kwon Y C, Kim S, Sul S K.Voltage feedback current control scheme for improved transient performance of permanent magnet synchronous machine drives[J]. IEEE Transactions on Industrial Electronics, 2012, 59(9): 3373-3382. [17] 张梓绥, 王琛琛, 游小杰, 等. 基于单Q轴电流调节器的永磁同步电机电流轨迹控制[J]. 电工技术学报, 2018, 33(24): 5779-5788. Zhang Zisui, Wang Chenchen, You Xiaojie, et al.Current locus control of permanent magnet synchronous motor based on single Q-axis current regulator flux-weakening method[J]. Transactions of China Electro-technical Society, 2018, 33(24): 5779-5788. [18] 李华, 方晓春, 林飞, 等. 异步牵引电机方波单电流闭环控制策略及其参数鲁棒性分析[J]. 电工技术学报, 2018, 33(9): 2034-2043. Li Hua, Fang Xiaochun, Lin Fei, et al.Singles current loop control strategy of induction traction motor in square wave mode and its parameter robustness analysis[J]. Transactions of China Electrotechnical Society, 2018, 33(9): 2034-2043. [19] 李雪, 迟颂, 刘聪, 等. 基于虚拟电阻的永磁同步电机单电流调节器弱磁控制[J]. 电工技术学报, 2020, 35(5): 1046-1054. Li Xue, Chi Song, Liu Cong, et al.Flux-weakening control with single current regulator of permanent magnet synchronous motor based on virtual resistor[J]. Transactions of China Electrotechnical Society, 2020, 35(5): 1046-1054. [20] 李生民, 张泽灵, 郭思语, 等. 混合励磁同步电机反馈线性化控制[J]. 电工技术学报, 2019, 34(增刊1): 39-51. Li Shengmin, Zhang Zeling, Guo Siyu, et al.Feedback linearization control of hybrid excitation synchronous motor[J]. Transactions of China Electro-technical Society, 2019, 34(S1): 39-51. [21] 郭栋, 张波, 王巍, 等. 混合励磁同步电机弱磁控制[J]. 电机与控制学报, 2020, 24(5): 135-142. Guo Dong, Zhang Bo, Wang Wei, et al.Flux-weakening control of hybrid excitation synchronous machines[J]. Electric Machines and Control, 2020, 24(5): 135-142. [22] 甘志伟, 王云冲, 缪冬敏, 等. 宽转速范围永磁同步发电机电流矢量控制[J]. 电机与控制学报, 2020, 24(1): 1-9. Gan Zhiwei, Wang Yunchong, Miao Dongmin, et al.Current vector control of permanent magnet syn-chronous generator for wide-speed-range operation[J]. Electric Machine and Control, 2020, 24(1): 1-9. [23] Kwon T S, Sul S K.Novel antiwindup of a current regulator of a surface-mounted permanent-magnet motor for flux-weakening control[J]. IEEE Transa-ctions on Industry Applications, 2006, 42(5): 1293-1300. [24] Preindl M, Bolognani S.Model predictive direct torque control with finite control set for PMSM drive systems, part 2: field weakening operation[J]. IEEE Transactions on Industrial Informatics, 2013, 9(4): 1912-1921. [25] Pan C T, Liaw J H.A robust field-weakening control strategy for surface-mounted permanent-magnet motor drives[J]. IEEE Transactions on Energy Con-version, 2005, 20(5): 701-709. [26] Chen Yu, Zhu Ziqiang, Howe D.Influence of inaccuracies in machine parameters on field-weakening performance of PM brushless AC drives[C]//IEEE International Conference of Elec-tronics Machine Drives, Seattle, WA, USA, 1999: 691-693. [27] Tursini M, Chiricozzi E, Petrella R.Feedforward flux-weakening control of surface-mounted permanent-magnet synchronous motors accounting for resistive voltage drop[J]. IEEE Transactions on Industrial Electronics, 2010, 57(1): 440-448. [28] Tursini M, Chiricozzi E, Petrella R.Flux-weakening control of surface mounted PM synchronous motors accounting for resistive voltage drop[C]//Inter-national. Conference of Electronics Machines, Vilamoura, Portugal, 2008: 1-6. [29] Liu Hesong, Zhu Ziqiang, Mohamed E, et al.Flux-weakening control of nonsalient pole PMSM having large winding inductance, accounting for resistive voltage drop and inverter nonlinearities[J]. IEEE Transactions on Power Electronics, 2012, 27(2): 942-952. [30] Wang Shuo, Kang Jinsong, Degano M, et al.An accurate wide-speed range control method of IPMSM considering resistive voltage drop and magnetic saturation[J]. IEEE Transactions on Industrial Electronics, 2020, 67(4): 2630-2641. [31] 李帅, 孙立志, 刘兴亚, 等. 永磁同步电机电流谐波抑制策略[J]. 电工技术学报, 2019, 34(增刊1): 87-96. Li Shuai, Sun Lizhi, Liu Xingya, et al.Current harmonics suppression strategies of permanent magnet synchronous motor[J]. Transactions of China Electrotechnical Society, 2019, 34(S1): 87-96. [32] Sul S.Control of electric machine drive systems[M]. Piscataway: Wiley-IEEE Press, 2011. [33] Liu Xu, Bi Jiaxuan, Zhu Ziqiang.Prediction of torque-speed characteristics of 6/4 variable flux reluctance machine considering high-order Harmonics of Flux-linkage[C]//22nd International Conference on Electrical Machines and Systems (ICEMS), Harbin, China, 2019: 1-6. [34] Zheng Junqiang, Zhao Wenxiang, Lee C H, et al.Improvement torque performance of interior permanent-magnet machines[J]. CES Transactions on Electrical Machines and Systems, 2019, 3(1): 12-18. |
|
|
|