|
|
Optimization and Experimental Research on the Test Platform of Rare-Earth Gaint Magnetostrictive Rod Characteristics |
Du Gaoxian, Yang Xin, Wei Yanfei, Ning Qian, Luo An |
National Engineering Research Center for Power Conversion and Control Hunan University Changsha 410082 China |
|
|
Abstract At present, parametric measurement and extraction methods for rare-earth giant magnetostrictive rods (aka "rods") differ widely at home and abroad, and most of them have not considered the prestress change caused by rod elongation during the testing process. This leads to incomparability and inaccuracy of these measurement results. As a result, the simulation design of magnetostrictive transducer is not supported by reliable characteristic parametric data. This paper provides a test platform for rare-earth giant magnetostrictive rods considering the prestress change caused by rod elongation. This platform can be used to test the static and quasi-static characteristics of the rods including magnetostrictive performance, B-H curve, Young's modulus, etc. The pressure- holding device was integrated and optimized to improve the test accuracy. The comparative experiments show that with the proposed pressure-holding device, the rate of prestress change of rods can be reduced from 10.625% to below 1.134%, and the performance is more accurate. In addition, the platform was used to test the B-H curve and curve of the rods. Two important parameters, permeability and Young's modulus, are obtained, and their variations with magnetic field and prestress are analyzed. The platform proposed in this paper provides a reliable measurement method for the parameter extraction of giant magnetostrictive rods.
|
Received: 24 July 2020
|
|
|
|
|
[1] 李一宁, 张培林, 何忠波, 等. 超磁致伸缩致动器的等效电路模型研究及实验分析[J]. 中国电机工程学报, 2018, 38(11): 3375-3383. Li Yining, Zhang Peilin, He Zhongbo, et al.Research and experimental analysis on equivalent circuit models for giant magnetostrictive actuators[J]. Pro-ceedings of the CSEE, 2018, 38(11): 3375-3383. [2] 许岳峰, 黄文美. 双线圈超磁致伸缩换能器三维磁场分析与优化[J]. 机电工程, 2019, 36(5): 544-548. Xu Yuefeng, Huang Wenmei.Optimization of 3D magnetic field of double coil giant magnetostrictive transducer[J]. Journal of Mechanical & Electrical Engineering, 2019, 36(5): 544-548. [3] 黄文美, 薛胤龙, 王莉, 等. 考虑动态损耗的超磁致伸缩换能器的多场耦合模型[J]. 电工技术学报, 2016, 31(7): 173-178. Huang Wenmei, Xue Yinlong, Wang Li, et al.Multi-field coupling model considering dynamic losses for giant magnetostrictive transducers[J]. Transactions of China Electrotechnical Society, 2016, 31(7): 173-178. [4] 刘敬华, 张天丽, 王敬民, 等. 巨磁致伸缩材料及应用研究进展[J]. 中国材料进展, 2012, 31(4): 1-12, 25. Liu Jinghua, Zhang Tianli, Wang Jingmin, et al.Giant magnetostrictive materials and their applications[J]. Materials China, 2012, 31(4): 1-12, 25. [5] 翁玲, 罗柠, 张露予, 等. Fe-Ga合金磁特性测试装置的设计与实验[J]. 电工技术学报, 2015, 30(2): 237-241. Weng Ling, Luo Ning, Zhang Luyu, et al.Design and experiment of a testing device for Fe-Ga magnetic properties[J]. Transactions of China Electrotechnical Society, 2015, 30(2): 237-241. [6] Wang Bowen, Huang Wenmei, Weng Ling, et al. Effect of stress and magnetic field on young's modulus of Tb0.3Dy0.7Fe2 <110> oriented alloy[J]. Materials Science Forum, 2011, 675-677: 1159-1162. [7] Moffett M B, Clark A E, Wun-Fogle M, et al.Characterization of Terfenol-D for magnetostrictive transducers[J]. Journal of the Acoustical Society of America, 1991, 89(3): 1448-1455. [8] Clark A E, Savage H T.Magnetostriction of rare earth-Fe2 compounds under compressive stress[J]. Journal of Magnetism and Magnetic Materials, 1983, 31: 849-851. [9] 冯雪. 铁磁材料本构关系的理论和实验研究[D]. 北京: 清华大学, 2002. [10] Scheidler J J, Asnani V M, Deng Zhangxian, et al.Dynamic characterization of Galfenol[C]//SPIE Smart Structures/NDE Conference, San Diego, CA, USA, 2015, 9432: 94320J. [11] Palumbo S, Rasilo P, Zucca M.Experimental investigation on a Fe-Ga close yoke vibrational harvester by matching magnetic and mechanical biases[J]. Journal of Magnetism and Magnetic Materials, 2019, 469: 354-363. [12] Liang Yirui, Zheng Xiaojing.Experimental researches on magneto-thermo-mechanical characterization of Terfenol-D[J]. Acta Mechanica Solida Sinica, 2007, 20(4): 283-288. [13] Li He, Liu Shuying, Wen Feng, et al.Study on dynamic of giant magnetostrictive material transducer with spring of nonlinear stiffness[J]. Journal of Mechanical Science and Technology, 2007, 21(6): 961-964. [14] 蔡万宠, 冯平法, 郁鼎文. 超磁致伸缩换能器预应力优化设计方法研究[J]. 振动. 测试与诊断, 2017, 37(1): 48-52, 198. Cai Wanchong, Feng Pingfa, Yu Dingwen.Research on the optimization design method of prestress for giant magnetostrictive transducer[J]. Journal of Vibration, Measurement & Diagnosis, 2017, 37(1): 48-52, 198. [15] 翁玲, 曹晓宁, 胡秀玉, 等. 双线圈铁镓合金换能器的输出特性[J]. 电工技术学报, 2018, 33(19): 4476-4485. Weng Ling, Cao Xiaoning, Hu Xiuyu, et al.Output characteristics of double coil Fe-Ga alloy trans-ducer[J]. Transactions of China Electrotechnical Society, 2018, 33(19): 4476-4485. [16] 翁玲, 梁淑智, 王博文, 等. 考虑预应力的双励磁线圈铁镓换能器输出特性[J]. 电工技术学报, 2019, 34(23): 4859-4869. Weng Ling, Liang Shuzhi, Wang Bowen, et al.Output characteristics of double-excited coil Fe-Ga transducer considering pre-stress[J]. Transactions of China Electrotechnical Society, 2019, 34(23): 4859-4869. [17] Abell J S, Butler D, Greenough R D, et al.Magnetomechanical coupling in Dy0.73Tb0.27Fe2 alloys[J]. Journal of Magnetism and Magnetic Materials, 1986, 62(1): 6-14. [18] Rafferty A, Bakir S, Brabazon D, et al.Calibration and characterisation with a new laser-based magneto-striction measurement system[J]. Materials & Design, 2009, 30(5): 1680-1684. [19] Kvarnsjo L, Engdahl G.A set-up for dynamic measurements of magnetic and mechanical behavior of magnetostrictive materials[J]. IEEE Transactions on Magnetics, 1989, 25(5): 4195-4197. [20] 冯慈璋, 马西奎. 工程电磁场导论[M]. 北京: 高等教育出版社, 2000. [21] 翁玲, 李薇娜, 曹晓宁, 等. 环形Fe-Ga合金动态磁导率和损耗分析[J]. 电工技术学报, 2019, 34(3): 459-465. Weng Ling, Li Weina, Cao Xiaoning, et al.Analysis of dynamic permeability and energy loss of ring-shaped Fe-Ga alloy[J]. Transactions of China Electro-technical Society, 2019, 34(3): 459-465. [22] Zhang Qian.Experimental characterization of Galfenol (FeGa) alloys[D]. Columbus: The Ohio State University, 2014. [23] 张旭辉. 超磁致伸缩作动器优化及主动隔振控制研究[D]. 北京: 北京航空航天大学, 2008. [24] Bai Xiabing, Jiang Chengbao.Dynamic parameters of Tb-Dy-Fe giant magnetostrictive alloy[J]. Journal of Rare Earths, 2010, 28(1): 104-108. [25] 全国弹簧标准化技术委员会. GB 1972—2005碟形弹簧[S]. 北京: 中国标准出版社, 2005. [26] 赵小军, 刘小娜, 肖帆, 等. 基于Preisach模型的取向硅钢片直流偏磁磁滞及损耗特性模拟[J]. 电工技术学报, 2020, 35(9): 1849-1857. Zhao Xiaojun, Liu Xiaona, Xiao Fan, et al.Hysteretic and loss modeling of silicon steel sheet under the DC biased magnetization based on the Preisach model[J]. Transactions of China Electrotechnical Society, 2020, 35(9): 1849-1857. [27] 翁玲, 常振, 孙英, 等. 不同磁致伸缩材料的高频磁能损耗分析与实验研究[J]. 电工技术学报, 2020, 35(10): 2079-2087. Weng Ling, Chang Zhen, Sun Ying, et al.Analysis and experimental study on high frequency magneto-strictive energy loss of different magnetostrictive materials[J]. Transactions of China Electrotechnical Society, 2020, 35(10): 2079-2087. [28] Su Quanmin, Morillo J, Wen Yiting, et al.Young's modulus of amorphous Terfenol-D thin films[J]. Journal of Applied Physics, 1996, 80(6): 3604-3606. |
|
|
|