[1] 刘素贞, 王淑娟, 张闯, 等. 钢板电磁超声表面波的仿真分析及缺陷定量检测[J]. 电工技术学报, 2020, 35(1): 97-105.
Liu Suzhen, Wang Shujuan, Zhang Chuang, et al. Simulation analysis and defect quantitative detection of electromagnetic ultrasonic surface wave of steel plate[J]. Transactions of China Electrotechnical Society, 2020, 35(1): 97-105.
[2] 黄文美, 薛胤龙, 王莉, 等. 考虑动态损耗的超磁致伸缩换能器的多场耦合模型[J]. 电工技术学报, 2016, 31(7): 173-178.
Huang Wenmei, Xue Yinlong, Wang Li, et al. Multi- field coupling model of giant magnetostrictive trans- ducer considering dynamic loss[J]. Transactions of China Electrotechnical Society, 2016, 31(7): 173-178.
[3] 周景涛, 何忠波, 刘国平, 等. 惯性式超磁致伸缩直线驱动器建模与实验[J]. 中国电机工程学报, 2020, 40(10): 3350-3359.
Zhou Jingtao, He Zhongbo, Liu Guoping, et al. Modeling and experiment of inertial giant magneto- strictive linear actuator[J]. Proceedings of the CSEE, 2020, 40(10): 3350-3359.
[4] 洪兴, 张洪平, 赵栋梁.超磁致伸缩材料的温度性能研究进展[J]. 金属功能材料, 2007(4): 32-35.
Hong Xing, Zhang Hongping, Zhao Dongliang.Research progress on the temperature performance of giant magnetostrictive materials[J]. Functional Metal Materials, 2007(4): 32-35.
[5] 段娜娜, 徐伟杰, 李永建, 等. 一种考虑温度和压力影响的磁滞模型及其实验验证[J]. 电工技术学报, 2019, 34(13): 2686-2692.
Duan Nana, Xu Weijie, Li Yongjian, et al. A hysteresis model considering the effects of temper- ature and pressure and its experimental verification[J]. Transactions of China Electrotechnical Society, 2019, 34(13): 2686-2692.
[6] 冯端.固体物理学大辞典[M]. 北京: 高等教育出版社, 1995.
[7] Zheng Xiaojiang, Sun Le.A nonlinear constitutive model of magneto-thermo-mechanical coupling for giant magnetostrictive materials[J]. Journal of Applied Physics, 2006, 100(6): 189.
[8] Albach M, Durbaum T, Brockmeyer A, et al. Calculating core losses in transformers for arbitrary magnetizing currents a comparison of different approaches[C]//Power Electronics Specialists Con- ference(PESC Record), Baveno, Italy, 1996: 1463-1468.
[9] 郜春艳, 黄文美, 刘卓锟, 等. Terfenol-D高频磁滞特性测试与分析[J]. 传感技术学报, 2018, 31(4): 518-522.
Gao Chunyan, Huang Wenmei, Liu Zhuokun, et al. Terfenol-D high-frequency hysteresis characteristics test and analysis[J]. Journal of Transducer Techno- logy, 2018, 31(4): 518-522.
[10] 翁玲, 常振, 孙英, 等. 不同磁致伸缩材料的高频磁能损耗分析与实验研究[J]. 电工技术学报, 2020, 35(10): 2079-2087.
Weng Ling, Chang Zhen, Sun Ying, et al. High- frequency magnetic energy loss analysis and experimental research of different magnetostrictive materials[J]. Transactions of China Electrotechnical Society, 2020, 35(10): 2079-2087.
[11] 黄文美, 吴晓晴, 李亚芳, 等. TbDyFe合金的高频动态磁特性及损耗特性分析[J]. 仪器仪表学报, 2020, 41(1): 215-222.
Huang Wenmei, Wu Xiaoqing, Li Yafang, et al. High frequency dynamic magnetic characteristics and loss characteristics analysis of TbDyFe alloy[J]. Journal of Instrumentation, 2020, 41(1): 215-222.
[12] Bertotti G.General properties of power losses in soft ferromagnetic materials[J]. IEEE Transactions on Magnetics, 2002, 24(1): 621-630.
[13] 赵志刚, 胡鑫剑.考虑畸变磁通及局部磁滞回环影响的层叠铁心损耗有效算法及验证[J]. 中国电机工程学报, 2019, 39(24): 7436-7443, 7517.
Zhao Zhigang, Hu Xinjian.Effective algorithm and verification of laminated core loss considering the effects of distorted magnetic flux and local hysteresis loops[J]. Proceedings of the CSEE, 2019, 39(24): 7436-7443, 7517.
[14] 刘刚, 孙立鹏, 王雪刚.正弦及谐波激励下的铁心损耗计算方法改进及仿真应用[J]. 电工技术学报, 2018, 33(21): 4909-4918.
Liu Gang, Sun Lipeng, Wang Xuegang.Improvement of core loss calculation method under sine and harmonic excitation and simulation application[J]. Transactions of China Electrotechnical Society, 2018, 33(21): 4909-4918.
[15] 迟青光, 张艳丽, 陈吉超, 等. 非晶合金铁心损耗与磁致伸缩特性测量与模拟[J]. 电工技术学报, 2021, 36(18): 3876-3883.
Chi Qingguang, Zhang Yanli, Chen Jichao, et al. Measurement and modeling of loss and magnetostrictive properties for the amorphous alloy core[J]. Transactions of China Electrotechnical Society, 2021, 36(18): 3876-3883. |