|
|
Transcranial Electrical Stimulation Device Based on Impedance Measurement of Current Perturbation Method |
Xu Shuo, Xu Kun, Li Qi, Chen Junyu, Xu Yun |
Wuhan National High Magnetic Field Center Huazhong University of Science and Technology Wuhan 430074 China |
|
|
Abstract As a non-invasive neurostimulation technique, multi-channel transcranial electrical stimulation has high focus and flexibility. However, the increase in the number of electrodes also increases the risk of electrode failure, and the requirements for the safety and reliability of the electrical stimulation device are more stringent. The electrode impedance can reflect the skin contact status and the electrochemical changes of the electrode, thus the online monitoring of the electrode impedance helps to improve the safety during electrical stimulation. Due to the crosstalk problem in multi-channel electrical stimulation, the direct measurement of electrode impedance has a large error. This paper proposes a new online impedance measurement method suitable for multi-channel electrical stimulation, which realizes crosstalk decoupling by superimposing short-term and small-amplitude current disturbances on the stimulation waveform, thereby measuring the impedance of each electrode and realizing the location of the faulty electrode. A composite amplifier enhanced Howland current source circuit was designed, and a multi-channel and a multi-mode transcranial electrical stimulation device was built using FPGA controller. Finally, a series of human body experiments were carried out through this device, the on-line monitoring of electrode impedance based on the current perturbation method was realized, and the faulty electrode was located in several types of common electrode poor contact experiments.
|
Received: 26 September 2020
|
|
|
|
|
[1] Brunoni A R, Nitsche M A, Bolognini N, et al.Clinical research with transcranial direct current stimulation (tDCS): challenges and future directions[J]. Brain Stimulation, 2012, 5(3): 175-195. [2] 张帅, 崔琨, 史勋, 等. 经颅磁声电刺激参数对神经元放电模式的影响分析[J]. 电工技术学报, 2019, 34(18): 3741-3749. Zhang Shuai, Cui Kun, Shi Xun, et al.Effect analysis of transcranial magneto-acousto-electrical stimulation parameters on neural firing patterns[J]. Transactions of China Electrotechnical Society, 2019, 34(18): 3741-3749. [3] Yadollahpour A, Jalilifar M, Rashidi S.Transcranial direct current stimulation for the treatment of depression: a comprehensive review of the recent advances[J]. International Journal of Mental Health and Addiction, 2017, 15(2): 434-443. [4] 尚莹春, 张涛. 重复经颅磁刺激对认知功能的作用及其分子机理的研究进展[J]. 电工技术学报, 2021, 36(4): 685-692. Shang Yingchun, Zhang Tao.The role of repetitive transcranial magnetic stimulation on cognitive function and its underlying molecular mechanism[J]. Transactions of China Electrotechnical Society, 2021, 36(4): 685-692. [5] 张帅, 高昕宇, 周振宇, 等. 基于GrC模型的经颅磁声电刺激对神经元放电活动的影响[J]. 电工技术学报, 2019, 34(17): 3572-3580. Zhang Shuai, Gao Xinyu, Zhou Zhenyu, et al.Effect of transcranial magnetic-acoustic electrical stimu-lation on neuronal discharge activity based on GrC model[J]. Transactions of China Electrotechnical Society, 2019, 34(17): 3572-3580. [6] 尹宁, 张家皓, 王海力, 等. 磁刺激穴位调节负性情绪的脑电溯源和脑网络研究[J]. 电工技术学报, 2021, 36(4): 756-764. Yin Ning, Zhang Jiahao, Wang Haili, et al.Electro-encephalogram source localization and brain network of magnetic stimulation at acupoints to regulate negative emotion[J]. Transactions of China Electro-technical Society, 2021, 36(4): 756-764. [7] Nitsche M A, Doemkes S, Karakose T, et al.Shaping the effects of transcranial direct current stimulation of the human motor cortex[J]. Journal of Neuro-physiology, 2007, 97(4): 3109-3117. [8] Manola L, Holsheimer J, Veltink P, et al.Anodal vs cathodal stimulation of motor cortex: a modeling study[J]. Clinical Neurophysiology, 2007, 118(2): 464-474. [9] Datta A, Bansal V, Diaz J, et al.Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad[J]. Brain Stimulation, 2009, 2(4): 201-207. [10] Datta A, Elwassif M, Battaglia F, et al.Transcranial current stimulation focality using disc and ring electrode configurations: FEM analysis[J]. Journal of Neural Engineering, 2008, 5(2): 163-174. [11] Park J H, Hong S B, Kim D W, et al.A novel array-type transcranial direct current stimulation (tDCS) system for accurate focusing on targeted brain areas[J]. IEEE Transactions on Magnetics, 2011, 47(5): 882-885. [12] Turi Z, Ambrus G, Ho K A, et al.What size matters: large electrodes induce greater stimulation-related cutaneous discomfort than smaller electrodes at equivalent current density[J]. Brain Stimulation, 2014, 7(3): 460-467. [13] Nitsche M A, Cohen L G, Wassermann E M, et al.Transcranial direct current stimulation: state of the art 2008[J]. Brain Stimulation, 2008, 1(3): 206-223. [14] 贾鑫, 李小俚. 用于经颅直流电刺激的个性化人体阻抗检测[J]. 中国医疗设备, 2019, 34(7): 29-33. Jia Xin, Li Xiaoli.Personalized human body impedance measurement for transcranial direct current stimulation[J]. China Medical Equipment, 2019, 34(7): 29-33. [15] Bahareh T, Izmail B, Voicu G, et al.Impact of skin-electrode interface on electrocardiogram measure-ments using conductive textile electrodes[J]. IEEE Transactions on Instrumentation and Measurement, 2014, 63(6): 1412-1422. [16] Xie Li, Yang Geng, Xu Linlin, et al.Characterization of dry biopotential electrodes[C]//35th Annual inter-national conference of the IEEE Engineering in Medicine and Biology Society, Osaka, Japan, 2013: 1478-1481. [17] Khadka N, Rahman A, Sarantos C, et al.Methods for specific electrode resistance measurement during transcranial direct current stimulation[J]. Brain Stimulation, 2015, 8(1): 150-159. [18] Hahn C, Rice J, Macuff S, et al.Methods for extra-low voltage transcranial direct current stimu-lation: current and time dependent impedance decreases[J]. Clinical Neurophysiology, 2013, 124(3): 551-556. [19] 刘红梅, 姚陈果, 董守龙, 等. 基于测量信号的不可逆电穿孔动态过程数值模拟及分析[J]. 电工技术学报, 2019, 34(18): 3732-3740. Liu Hongmei, Yao Chenguo, Dong Shoulong, et al.Dynamic numerical modeling and analyzing on the process of irreversible electroporation based on measurement signal[J]. Transactions of China Elec-trotechnical Society, 2019, 34(18): 3732-3740. [20] 熊慧, 王玉领, 付浩, 等. 一种应用于经颅磁刺激脉冲宽度可调的节能型激励源[J]. 电工技术学报, 2020, 35(4): 679-686. Xiong Hui, Wang Yuling, Fu Hao, et al.An energy efficient excitation source for transcranial magnetic stimulation with controllable pulse width[J]. Transa-ctions of China Electrotechnical Society, 2020, 35(4): 679-686. [21] 陈笑风, 杜磊, 赵柏树. 基于Howland电流源的精密压控电流源[J]. 电子技术应用, 2012, 38(9): 71-74. Chen Xiaofeng, Du Lei, Zhao Baishu.Precision voltage-controlled current source based on Howland current source[J]. Application of Electronic Technology, 2012, 38(9): 71-74. [22] Bikson M, Datta A, Elwassif M.Establishing safety limits for transcranial direct current stimulation[J]. Clinical Neurophysiology Official Journal of the International Federation of Clinical Neurophysiology, 2009, 120(6): 1033-1034. [23] Merrill D R, Bikson M, Jefferys G R.Electrical stimulation of excitable tissue: design of efficacious and safe protocols[J]. Journal of Neuroence Methods, 2005, 141(2): 171-198. |
|
|
|