|
|
Hybrid Isolated Modular Multilevel Converter |
Lin Lin1, Pei Zhongchen1, Cai Guowei1, Liu Chuang1, Pei Yong2 |
1. School of Electrical Engineering Northeast Electric Power University Jilin 132012 China; 2. State Grid Fushun Electric Power Company Fushun 113000 China |
|
|
Abstract Thanks to the advantages such as multi-ports, modular topology, easy to achieve voltage level expansion and high quality of output waveform, the power electronic transformer (PET) based on modular multilevel converter (MMC) has received widespread attention. However, because the voltage on the MVAC (medium-voltage alternating current) side is created by the MVDC (medium voltage direct current) bus, the voltage of MVAC port is always lower than the MVDC port voltage. Combining with the modular topology and single-stage power conversion ideas, this paper proposed a hybrid isolated modular multilevel converter (HI-MMC). Firstly, the HI-MMC structure as well as the topology and modulation strategy of two isolated sub-modules in HI-MMC was analyzed. Through the combination of two different sub-modules, HI-MMC could break through the limitation of voltage ratio and realize the flexible design of the voltage level in each port. Moreover, HI-MMC has main advantages of single-stage power conversion, simple control system and capacitance saving. Secondly, the corresponding configuration schemes of various sub-modules under different voltage ratios were studied, and the average equivalent model of single-phase HI-MMC system was established. Finally, the experimental results on a scaled-down 10kW HI-MMC prototype show that the proposed circuit topology is feasible and effective.
|
Received: 23 June 2020
|
|
|
|
|
[1] Ji Shiqi, Zhang Zheyu, Fred Wang.Overview of high voltage sic power semiconductor devices: deve- lopment and application[J]. CES Transactions on Electrical Machines and Systems, 2017, 1(3): 254-264. [2] 涂春鸣, 黄红, 兰征, 等. 微电网中电力电子变压器与储能的协调控制策略[J]. 电工技术学报, 2019, 34(12): 2627-2636. Tu Chunming, Huang Hong, Lan Zheng, et al.Coordinated control strategy of power electronic transformer and energy storage in microgrid[J]. Transactions of China Electrotechnical Society, 2019, 34(12): 2627-2636. [3] 刘晋源, 吕林, 高红均, 等. 计及分布式电源和电动汽车特性的主动配电网规划[J]. 电力系统自动化, 2020, 44(12): 41-49. Liu Jinyuan, Lü Lin, Gao Hongjun, et al.Planning of active distribution network considering characteri- stics of distributed generator and electric vehicle[J]. Automation of Electric Power Systems, 2020, 44(12): 41-49. [4] 李子欣, 高范强, 赵聪, 等. 电力电子变压器技术研究综述[J]. 中国电机工程学报, 2018, 38(5): 1274-1289. Li Zixin, Gao Fanqiang, Zhao Cong, et al.Research review of power electronic transformer techno- logies[J]. Proceedings of the CSEE, 2018, 38(5): 1274-1289. [5] Dieckerhoff S, Bernet S, Krug D.Power loss-oriented evaluation of high voltage IGBTs and multilevel converters in transformerless traction applications[J]. IEEE Transactions on Power Electronic, 2005, 20(6): 1328-1336. [6] 王婷, 王广柱, 张勋. 基于模块化多电平矩阵变换器的电力电子变压器控制策略[J]. 电工技术学报, 2016, 31(18): 108-115. Wang Ting, Wang Guangzhu, Zhang Xun.The control strategy of power electronic transformer based on modular multilevel matrix convertors[J]. Transaction of China Electrotechnical Society, 2016, 31(18): 108-115. [7] 盛万兴, 段青, 梁英, 等. 面向能源互联网的灵活配电系统关键装备与组网形态研究[J]. 中国电机工程学报, 2015, 35(15): 3760-3769. Sheng Wanxing, Duan Qing, Liang Ying, et al.Research of power distribution and application grid structure and equipment for future energy Internet[J]. Proceedings of the CSEE, 2015, 35(15): 3760-3769. [8] Feng Jianghua, Chu W Q, Zhang Zhixue, et al.Power electronic transformer-based railway traction systems: challenges and opportunities[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2017, 5(3): 1237-1253. [9] 张雪垠, 徐永海, 肖湘宁. 适用于中高压配电网的高功率密度谐振型级联H桥固态变压器[J]. 电工技术学报, 2018, 33(2): 310-321. Zhang Xueyin, Xu Yonghai, Xiao Xiangning.A highpower density resonance cascaded H-bridge solid-state transformer for medium and high voltage distribution network[J]. Transactions of China Elec- trotechnical Society, 2018, 33(2): 310-321. [10] 叶满园, 宋桂智, 康翔, 等. Ⅱ型不对称CHB多电平逆变器SHEPWM功率均衡控制策略[J]. 电机与控制学报, 2020, Ⅱ型不对称CHB多电平逆变器SHEPWM功率均衡控制策略[J]. 电机与控制学报, 2020, http://kns.cnki.net/kcms/detail/23. 1408.thm.20200106.1317.002.html. Ye Manyuan, Song Guizhi, Kang Xiang, et al.Type II asymmetric CHB multilevel inverter SHEPWM power balance control strategy[J]. Electric Machines and Control, 2020, Type II asymmetric CHB multilevel inverter SHEPWM power balance control strategy[J]. Electric Machines and Control, 2020, http://kns.cnki.net/kcms/detail/23.1408. thm.20200106.1317.002.html. [11] 艾欣, 荣经国, 吕正, 等. 一种新型的能量路由器结构及其控制策略的研究[J]. 电网技术, 2019, 43(4): 1202-1210. Ai Xin, Rong Jingguo, Lü Zheng, et al.Research on structure and control strategy of a novel energy router[J]. Power System Technology, 2019, 43(4): 1202-1210. [12] Briz F, Lopez M, Rodriguez A, et al.Modular power electronic transformers: modular multilevel converter versus cascaded H-bridge solutions[J]. IEEE Indu- strial Electronics Magazine, 2016, 10(4): 6-19. [13] Chen Yu, Zhao Shanshan, Li Zuoyu, et al.Modeling and control of the isolated DC-DC modular multilevel converter for electric ship medium voltage direct current power system[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2017, 5(1): 124-139. [14] Chen Yu, Li Zuoyu, Zhao Shanshan, et al.Design and implementation of a modular multilevel converter with hierarchical redundancy ability for electric ship MVDC system[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2017, 5(1): 189-202. [15] Rahim N A, Elias M F M, Hew W P. Transistor- clamped H-bridge based cascaded multilevel inverter with new method of capacitor voltage balancing[J]. IEEE Transactions on Industrial Electronics, 2013, 60(8): 2943-2956. [16] 谷恭山, 郑祥杰, 高明, 等. 两级结构模块化ISOP组合的DC-DC变换器均压控制策略[J]. 电工技术学报, 2019, 34(15): 3175-3185. Gu Gongshan, Zheng Xiangjie, Gao Ming, et al.Research on voltage sharing control strategy of a combined two-stage modular input-series output- parallel DC-DC converter[J]. Transactions of China Electrotechnical Society, 2019, 34(15): 3175-3185. [17] 黄守道, 彭也伦, 廖武. 模块化多电平型换流器电容电压波动及其抑制策略研究[J]. 电工技术学报, 2015, 30(7): 62-71. Huang Shoudao, Peng Yelun, Liao Wu.Study of capacitor voltage fluctuation and its suppression for modular multilevel converter[J]. Transactions of China Electrotechnical Society, 2015, 30(7): 62-71. [18] 张臣, 叶华, 韦凌霄, 等. 不平衡状态下MMC双回路环流抑制策略[J]. 电工技术学报, 2019, 34(9): 1924-1933. Zhang Chen, Ye Hua, Wei Lingxiao, et al.Double- loop circulating current suppressing strategy for modular multilevel converter under unbalanced conditions[J]. Transactions of China Electrotechnical Society, 2019, 34(9): 1924-1933. [19] 李凯, 赵争鸣, 袁立强. 模块化多电平变换器上、下桥臂不对称运行环流重复控制[J]. 电工技术学报, 2016, 31(20): 122-129. Li Kai, Zhao Zhengming, Yuan Liqiang.Repetitive control of circulating current in MMC with asymmetrical operation of upper and lower arms[J]. Transactions of China Electrotechnical Society, 2016, 31(20): 122-129. [20] 裴忠晨, 林霖, 应鸿, 等. I-M2C型单级式电力电子变压器[J]. 电网技术, 2020, 44(9): 3565-3574. Pei Zhongchen, Lin Lin, Ying Hong, et al.Single- stage power electronic transformer based on isolated modular multilevel converter (I-M2C)[J]. Power System Technology, 2020, 44(9): 3565-3574. [21] 罗永捷, 宋勇辉, 熊小伏, 等. 高压大容量MMC换流阀损耗精确计算[J]. 中国电机工程学报, 2020, 40(23): 7730-7742. Luo Yongjie, Song Yonghui, Xiong Xiaofu, et al.Accurate loss calculation method for bulk-power MMCs[J]. Proceedings of the CSEE, 2020, 40(23): 7730-7742. |
|
|
|