|
|
Polymerization of Stimuli-Responsive Hydrogels by Using a Cold Atmospheric Plasma Jet |
Shi Fukun1, Guo Yuyi1, Wang Qun1, Juergen F. Kolb2, Zhuang Jie1 |
1. Suzhou Institute of Biomedical Engineering and Technology Chinese Academy of Sciences Suzhou 215163 China; 2. Leibniz Institute of Plasma Science and Technology Greifswald 17489 Germany |
|
|
Abstract An atmospheric plasma jet (APPJ) was used to directly treat the mixture of (hydroxyethyl) methacrylate (HEMA) and 2-(diethylamino)ethyl methacrylate (DEAEMA) monomers to get stimuli-responsive hydrogels. The fabrication of plasma polymerized HEMA-co-DEAEMA (PPHD) hydrogels did not need crosslinkers or initiator agents. Analysis of X-ray photoelectron spectroscopy (XPS) revealed that PPHD hydrogels inherited functionalities of individual monomers. The calculation of the contact angle and surface energy indicated that PPHD hydrogels are hydrophilic. Impedance spectroscopy for PPHD hydrogels in different pH solutions revealed a reversible pH-response manner. In vitro cytotoxicity test showed a good biocompatibility for PPHD hydrogels, which could significantly enhance the adhesion and proliferation of osteoblast cells (MG-63).
|
Received: 30 October 2020
|
|
|
|
|
[1] Zhang Y S, Khademhosseini A. Advances in engineering hydrogels[J]. Science, 2017, 356 (6337): eaaf3627. [2] Martien A Cohen Stuart, Wilhelm T S Huck, Jan Genzer, et al. Emerging applications of stimuli-responsive polymer materials[J]. Nature Materials, 2010, 9(2): 101-113. [3] Kannie W Y Chan, Liu Guanshu, Song Xiaolei, et al. MRI-detectable pH nanosensors incorporated into hydrogels for in vivo sensing of transplanted-cell viability[J]. Nature Materials, 2013, 12(3): 268-275. [4] Andre G Skirtach, Almudena Muñoz Javier, Oliver Kreft, et al.Laser-induced release of encapsulated materials inside living cells[J]. Angewandte Chemie International Edition, 2006, 45(28): 4612-4617. [5] Dror Seliktar.Designing cell-compatible hydrogels for biomedical applications[J]. Science, 2012, 336(6085): 1124-1128. [6] Vericat C, Vela M E, Benitez G, et al.Self-assembled monolayers of thiols and dithiols on gold: new challenges for a well-known system[J]. Chemical Society Reviews, 2010, 39(5): 1805-1834. [7] 吴世林, 杨庆, 邵涛. 低温等离子体表面改性电极材料对液体电介质电荷注入的影响[J]. 电工技术学报, 2019, 34(16): 3494-3503. Wu Shilin, Yang Qing, Shao Tao.Effect of surface-modified electrode by low temperature plasma on charge injection of liquid dielectric[J]. Transactions of China Electrotechnical Society, 2019, 34(16): 3494-3503. [8] 张迅, 曾华荣, 田承越, 等. 大气压等离子体制备超疏水表面及其防冰抑霜研究[J]. 电工技术学报, 2019, 34(24): 5289-5296. Zhang Xun, Zeng Huarong, Tian Chengyue, et al.Super-hydrophobic surface prepared by atmospheric-pressure plasma and its anti-icing, anti-frosting performance[J]. Transactions of China Electrotechnical Society, 2019, 34(24): 5289-5296. [9] 夏文杰, 刘定新. Ar等离子体射流处理乙醇水溶液的放电特性及灭菌效应[J]. 电工技术学报, 2021, 36(4): 765-776. Xia Wenjie, Liu Dingxin.Discharge characteristics and bactericidal effect of Ar plasma jet treating ethanol aqueous solution[J]. Transactions of China Electrotechnical Society, 2021, 36(4): 765-776. [10] 梅丹华, 方志, 邵涛. 大气压低温等离子体特性与应用研究现状[J]. 中国电机工程学报 2020, 40(4): 1339-1358, 1425. Mei Danhua, Fang Zhi, Shao Tao.Recent progress on characteristics and applications of atmospheric pressure low temperature plasmas[J]. Proceedings of the CSEE, 2020, 40(4): 1339-1358, 1425. [11] 詹振宇, 阮浩鸥, 律方成, 等. 等离子体氟化改性环氧树脂及其在C4F7N/CO2 混合气体中电气性能研究[J]. 电工技术学报, 2020, 35(8): 1787-1798. Zhan Zhenyu, Ruan Haoou, Lü Fangcheng, et al.Plasma fluorinated epoxy resin and its insulation properties in C4F7N/CO2 mixed gas[J]. Transactions of China Electrotechnical Society, 2020, 35(8): 1787-1798. [12] 程振平, 路健美, 朱秀林, 等. 等离子体引发非离子型高吸水性树脂的合成及性能[J]. 精细化工, 1999, 16(6): 49-52. Cheng zhenping, Lu Jianmei, Zhu Xiulin, et al. Synthesis and property of non-ionic super water-absorbing resin by plasma initiated polymerization[J]. Fine Chemicals, 1999, 16(6): 49-52. [13] 谭帼馨, 陈荣, 宁成云, 等. 低温等离子体表面处理PEGDA/HEMA水凝胶的时效性及亲水性[J]. 高分子材料科学与工程, 2010, 26(10):60-62. Tan Guoxin, Chen Rong, Ning Chengyun, et al.Hydrophilic and timeliness of surface modified by low temperature plasma for PEGDA/HEMA hydrogel[J]. Polymer Materials Science and Engineering, 2010, 26(10): 60-62. [14] 张文明, 张玉苍, 李庆, 等. 辉光放电电解等离子体引发纤维素基水凝胶的制备及其多重响应行为[J]. 高电压技术, 2015, 41(2): 523-528. Zhang Wenming, Zhang Yucang, Li Qing, et al.Glow discharge electrolysis plasma induced synthesis of cellulose-graft-acrylic hydrogels and their multiple responses behaviors[J]. High Voltage Engineering 2015, 41(2): 523-528. [15] Denni Kurniawan, Byung Sunkim, Lee Hoyong, et al.Atmospheric pressure glow discharge plasma polymerization for surface treatment on sized basalt fiber/polylactic acid composites[J]. Composites Part B: Engineering, 2012, 43(3): 1010-1014. [16] Trunec D, Zajíčková L, Buršíková V, et al.Deposition of hard thin films from HMDSO in atmospheric pressure dielectric barrier discharge[J]. Journal of Physics D: Applied Physics, 2010, 43(22): 225403. [17] Molina R, Jovancic P M, Vilchez S, et al.In situ chitosan gelation initiated by atmospheric plasma treatment[J]. Carbohydrate Polymers, 2014, 103: 472-479. [18] Beck A J, Short R D, Matthews A.Deposition of functional coatings from acrylic acid and octamethylcyclotetrasiloxane onto steel using an atmospheric pressure dielectric barrier discharge[J]. Surface and Coatings Technology, 2008, 203(5): 822-825. [19] 米彦, 苟家喜, 刘露露, 等. 脉冲介质阻挡放电等离子体改性对 BN/EP 复合材料击穿强度和热导率的影响[J]. 电工技术学报, 2020, 35(18): 3949-3959. Mi Yan, Gou Jiaxi, Liu Lulu, et al.Effect of pulse dielectric barrier discharge plasma modification on breakdown strength and thermal conductivity of BN/EP composites[J]. Transactions of China Electrotechnical Society, 2020 35(18): 3949-3959. [20] 王瑞雪, 张鹏, 徐晖, 等. 不同基底对等离子体射流放电及薄膜特性的影响[J]. 高电压技术,2019,45(5): 1360-1366. Wang Ruixue, Zhang Penghao, Xu Hui, et al.Effect of different substrates on plasma jet discharge characteristics and thin film properties[J]. High Voltage Engineering, 2019, 45(5): 1360-1366. [21] Ekaterina Makhneva, Laura Barillas, et al.Functional plasma polymerized surfaces for biosensing[J]. Applied Materials & Interfaces, 2020, 12(14): 17100-17112. [22] Sun Jiaotong, Hong Chunyan, Pan Caiyuan.Fabrication of PDEAEMA-coated mesoporous silica nanoparticles and pH-responsive controlled release[J]. The Journal of Physical Chemistry C, 2010, 114(29): 12481-12486. [23] Jörg Friedrich.The plasma chemistry of polymer surfaces: advanced techniques for surface design[M]. Berlin: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. [24] Kostov K G, Thalita Nishime, Castro A H R, et al. Surface modification of polymeric materials by cold atmospheric plasma jet[J]. Applied Surface Science, 2014, 314: 367-375. [25] Veuillet M, Ploux L, Airoudj A, et al.Macroscopic control of DMAHEMA and HEMA plasma polymerization to tune the surface mechanical properties of hydrogel-like coatings[J]. Plasma Process Polym, 2017, 14(10): e1600215 [26] Schwan H P.Electrode polarization impedance and measurements in biological materials[J]. Annals of the New York Academy of Sciences, 1968, 148(1): 191-209. |
|
|
|