|
|
The Experimental Research on Removal of Nitrogen Oxide by High Voltage Pulse Dielectric Barrier Discharge Combined with Metal-Organic Framework Materials Catalyst |
Dong Bingyan, Li Zhendong, Su Yawei, Luo Ting, Zou Ying |
College of Resources and Environmental Engineering Jiangxi University of Science and Technology Ganzhou 341000 China |
|
|
Abstract Combined with metal-organic framework materials, i.e., composite MOF materials catalyst, high voltage pulse dielectric barrier discharge was adopted to the removal of nitrogen oxide in oxygen-enriched condition. Composite MOF materials, were prepared by hydrothermal synthesis, and X-ray diffraction (XRD), scanning electron microscope (SEM) characterization technologies were adopted to analyze the composite MOF material. Then the influences of MIL-100(Fe) and catalysts with different Ce contents on NO conversion and NOx removal rate at different temperatures were investigated. The results show that with ±12kV discharge voltage, frequency of 55Hz, 4% oxygen concentration, 1L/min gas flow rate, and 400mg/L initial NOx concentration, the NOx degradation is the most effective when the added 0.08mol/L CeO2/MIL-100(Fe) catalyst and dielectric barrier discharge plasma act together. In that case, the conversion rate of NO is 91.1%, and with the increase of temperature, the overall degradation effect shows an upward trend. The pulse dielectric barrier discharge could change the morphology and structure of catalysts. And after adding a certain amount of Ce, the surface of the MIL-100(Fe) catalyst is smoother, the micropores are increased, the specific surface area is increased, the covered unsaturated metal coordination sites are exposed, and the active sites required for the reaction are increased, which promotes the effective progress of the catalytic reaction and results in higher removal rate of NOx.
|
Received: 21 July 2020
|
|
Fund:国家自然科学基金资助项目(51567010,51167007) |
|
|
|
[1] 王文兴, 柴发合, 任阵海, 等. 新中国成立70年来我国大气污染防治历程、成就与经验[J]. 环境科学研究, 2019, 32(10): 1621-1635. Wang Wenxing, Chai Fahe, Ren Zhenhai, et al.Process,achievements and experience of air pollution control in china since the founding of the People's Republic of China 70 years ago[J]. Research of Environmental Sciences, 2019, 32(10): 1621-1635. [2] 陈佳璇, 成润禾, 李巍. 城市工业大气污染物排放总量统筹分配研究[J]. 中国环境科学, 2018, 38(12): 4737-4741. Chen Jiaxuan, Cheng Runhe, Li Wei.Method and application on overall allocation of space and industry for urban industrial total atmospheric pollutant emission[J]. China Environmental Science, 2018, 38(12): 4737-4741. [3] 崔胜辉, 于裕贤, 宋晓东, 等. 大气污染对城市植被的生态胁迫效应综述[J]. 生态科学, 2009, 28(6): 562-567. Cui Shenghui, Yu Yuxian, Song Xiaodong, et al.Review on air pollution induced ecological stress effects on urban vegetation[J]. Ecological Science, 2009, 28(6): 562-567. [4] 张远航, 邵可声, 唐孝炎, 等. 中国城市光化学烟雾污染研究[J]. 北京大学学报(自然科学版), 1998(Z1): 3-5. Zhang Yuanhang, Shao Kesheng, Tang Xiaoyan, et al.The study of urban photochemical smog pollution in China[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 1998(Z1): 3-5. [5] 戴华茂. 光化学烟雾研究综述[J]. 广东化工, 2009, 36(7): 107-108. Dai Huamao.The summary of research on photochemical smog[J]. Guangdong Chemical Industry, 2009, 36(7): 107-108. [6] 李莉娜, 赵长民, 潘本锋, 等. 我国大气光化学烟雾污染现状与监测网络构建建议[J]. 中国环境监测, 2018, 34(5): 81-87. Li Lina, Zhao Changmin, Pan Benfeng, et al.Photochemical smog pollution status and proposal for its monitoring network construction in China[J]. Environmental Monitoring in China, 2018, 34(5): 81-87. [7] Muilwijk C, Schrijvers P J C, Wuerz S, et al. Simulations of photochemical smog formation in complex urban areas[J]. Atmospheric Environment, 2016, 147: 470-484. [8] 吴丹, 于亚鑫, 夏俊荣, 等. 我国灰霾污染的研究综述[J]. 环境科学与技术, 2014, 37(增刊2): 295-304. Wu Dan, Yu Yaxin, Xia Junrong, et al.Hazy pollution research of China: a review[J]. Environmental Science & Technology, 2014, 37(S2): 295-304. [9] 张楚莹, 王书肖, 邢佳, 等. 中国能源相关的氮氧化物排放现状与发展趋势分析[J]. 环境科学学报, 2008(12): 2470-2479. Zhang Chuying, Wang Shuxiao, Xing Jia, et al.Current status and future projections of NOx emissions from energy related industries in China[J]. Acta Scientiae Circumstantiae, 2008(12): 2470-2479. [10] Mok Y S, Huh Y J.Simultaneous removal of nitrogen oxides and particulate matters from diesel engine exhaust using dielectric barrier discharge and catalysis hybrid system[J]. Plasma Chemistry and Plasma Processing, 2005, 25(6): 625-639. [11] 朱博峰, 鲁军勇, 张晓, 等. 大容量脉冲电容器放电起始阶段晶闸管电压高频振荡机理研究[J]. 电工技术学报, 2020, 35(6): 1272-1278. Zhu Bofeng, Lu Junyong, Zhang Xiao, et al.Study on the high frequency voltage oscillation of thyristor during the initial stage of pulse capacitor discharge[J]. Transactions of China Electrotechnial Society, 2020, 35(6): 1272-1278. [12] 叶成园, 黄邦斗, 章程, 等. 纳秒脉冲激励的表面介质阻挡放电中表面电离波传播特性[J]. 电工技术学报, 2020, 35(12): 2652-2661. Ye Chengyuan, Huang Bangdou, Zhang Cheng, et al.The propagation characteristics of surface ionization wave in surface dielectric barrier discharge sustained by the nanosecond pulse voltage[J]. Transactions of China Electrotechnial Society, 2020, 35(12): 2652-2661. [13] 米彦, 苟家喜, 刘露露, 等. 脉冲介质阻挡放电等离子体改性对BN/EP复合材料击穿强度和热导率的影响[J]. 电工技术学报, 2020, 35(18): 3949-3959. Mi Yan, Gou Jiaxi, Liu Lulu, et al.Effect of pulse dielectric barrier discharge plasma modification on breakdown strength and thermal conductivity of BN/EP composites[J]. Transactions of China Electrotechnial Society, 2020, 35(18): 3949-3959. [14] Alkawareek M Y, Gorman S P, Graham W G, et al.Potential cellular targets and antibacterial efficacy of atmospheric pressure non-thermal plasma[J]. International Journal of Antimicrobial Agents, 2014, 43(2): 154-160. [15] 刘彤, 于琴琴, 王卉, 等. 等离子体与催化剂协同催化CH4选择性还原脱硝反应[J]. 催化学报, 2011, 32(9): 1502-1507. Liu Tong, Yu Qinqin, Wang Hui, et al.Selective catalytic reduction of NO by CH4 in combination of non-thermal plasma and catalysts[J]. Chinese Journal of Catalysis, 2011, 32(9) : 1502-1507. [16] 姚广增, 彭克, 李海荣, 等. 柔性直流配电系统高频振荡降阶模型与机理分析[J]. 电力系统自动化, 2020, 44(20): 29-46. Yao Guangzeng, Peng Ke, Li Hairong, et al.Reduced-order model and mechanism analysis of high-frequency oscillation in flexible DC distribution system[J]. Automation of Electric Power Systems, 2020, 44(20): 29-46. [17] 闫克平, 李树然, 冯卫强, 等. 高电压环境工程应用研究关键技术问题分析及展望[J]. 高电压技术, 2015, 41(8): 2528-2544. Yan Keping, Li Shuran, Feng Weiqiang, et al.Analysis and prospect on key technology of high-voltage discharge for environmental engineering study and application[J]. High Voltage Engineering, 2015, 41(8): 2528-2544. [18] Stere C E, Adress W, Burch R, et a1. Probing a non-thermal plasma activated heterogeneously catalyzed reaction using in situ DRIFTS-MS[J].Acs Catalysis, 2015, 5(2): 956-964. [19] 邵涛, 章程, 王瑞雪, 等. 大气压脉冲气体放电与等离子体应用[J]. 高电压技术, 2016, 42(3): 685-705. Shao Tao, Zhang Cheng, Wang Ruixue, et al.Atmospheric-pressure pulsed gas discharge and pulsed plasma application[J]. High Voltage Engineering, 2016, 42(3): 685-705. [20] Hammer T, Kappes T, Baldauf M.Plasma catalytic hybrid processes: gas discharge initiation and plasma activation of catalytic processes[J]. Catalysis Today, 2004, 89(1): 5-14. [21] 吴世林, 杨庆, 邵涛. 低温等离子体表面改性电极材料对液体电介质电荷注入的影响[J]. 电工技术学报, 2019, 34(16): 3494-3503. Wu Shilin, Yang Qing, Shao Tao.Effect of surface-modified electrode by low temperature plasma on charge injection of liquid dielectric[J]. Transactions of China Electrotechnical Society, 2019, 34(16): 3494-3503. [22] 乐彦杰, 汪洋, 郑新龙, 等. 交联聚乙烯与浸渍纸绝缘直流电缆接头电场分布[J]. 电机与控制学报, 2019, 23(2): 75-86. Le Yanjie, Wang Yang, Zheng Xinlong, et al.Electric field distributions in the joint of XLPE and mass impregnated HVDC cables[J]. Electric Machines and Control, 2019, 23(2): 75-86. [23] 米彦, 万佳仑, 卞昌浩, 等. 基于磁脉冲压缩的DBD高频双极性纳秒脉冲发生器的设计及其放电特性[J]. 电工技术学报, 2017, 32(24): 244-256. Mi Yan, Wang Jialun, Bian Changhao, et al.Design of DBD high-frequency bipolar nanosecond pulse generator based on magnetic pulse compression system and its discharging characteristics[J]. Transactions of China Electrotechnical Society, 2017, 32(24): 244-256. [24] 董冰岩, 甘青青, 孙宇, 等. 高压脉冲放电协同复合型催化剂去除甲醛的实验[J]. 电工技术学报, 2017, 32(8): 108-113. Dong Bingyan, Gan Qingqing, Sun Yu, et al.Degradation of formaldehyde by high voltage pulse discharge combined with compound catalyst[J]. Transactions of China Electrotechnical Society, 2017, 32(8): 108-113. [25] 郑殿春, 沈湘东, 郑秋平, 等. 电极介质覆盖SF6间隙纳秒脉冲电压放电特性研究[J]. 电机与控制学报, 2019, 23(11): 84-91. Zheng Dianchun, Shen Xiangdong, Zheng Qiuping, et al.SF6 discharge behaviors of electrode-covered with dielectric under nanosecond impulse voltages[J]. Electric Machines and Control, 2019, 23(11): 84-91. [26] 李世龙, 滕予非, 李小鹏, 等. 基于注入法的改进特高压直流接地极引线保护方法[J]. 电力系统自动化, 2019, 43(16): 155-163, 174. Li Shilong, Teng Yufei, Li Xiaopeng, et al.An improved protection method of grounding electrode line for UHVDC based on injection method[J]. Automation of Electric Power Systems, 2019, 43(16): 155-163, 174. [27] 董冰岩, 周海金, 聂亚林, 等. 多针-板高压脉冲放电反应器结构优化及降解甲醛的实验研究[J]. 高电压技术, 2016, 42(2): 377-383. Dong Bingyan, Zhou Haijin, Nie Yalin, et al.Structure optimization of multi-needles-plate high-voltage pulse discharge reactor and formaldehyde degradation[J]. High Voltage Engineering, 2016, 42(2): 377-383. [28] Horcajada P, Surble S, Serre C, et al.Synthesis and catalytic properties of MIL-100(Fe), an iron(III) carboxylate with large pores[J]. Chemical Communications, 2007(27): 2820-2822. [29] Li Xianchun, Wang Huanran, Shao Gege, et al.Low temperature reduction of NO by activated carbons impregnated with Fe based catalysts[J]. International Journal of Hydrogen Energy, 2019, 44(46): 25265-25275. [30] Canioni R, Roch-Marchal C, Sécheresse F, et al.Stable polyoxometalate insertion within the mesoporous metal organic framework MIL-100(Fe)[J]. Journal of Materials Chemistry, 2011, 21(4): 1226-1233. [31] Zhang Xu, Zhang Wei, Liang Xingyan, et al.Performance analysis and comparison for two topologies of flux-switching permanent magnet machine[J]. CES Transactions on Electrical Machines and Systems, 2020, 4(3): 190-197. [32] Chen Liang, Li Junhua, Ge Maofa, et al.Mechanism of selective catalytic reduction of NOx with NH3 over CeO2-WO3 catalysts[J]. Chinese Journal of Catalysis, 2011. 32(5): 836-841. [33] Yu Yang, Cong Leyao, Tian Xia, et al.A stator current vector orientation based multi-objective integrative suppressions of flexible load vibration and torque ripple for PMSM considering electrical loss[J]. CES Transactions on Electrical Machines and Systems, 2020, 4(3): 161-171. [34] Tsunekawa S, Fukuda T, Kasuya A.X-ray photoelectron spectroscopy of monodisperse CeO2-x nanoparticles[J]. Surface Science, 2000, 457(3): L437-L440. [35] 张波, 汪立峰, 刘峰, 等. 交流和纳秒脉冲激励氦气中等离子体射流阵列放电特性比较[J]. 电工技术学报, 2019, 34(6): 1319-1328. Zhang Bo, Wang Lifeng, Liu Feng, et al.Comparison on discharge characteristics of the helium plasma jet array excited by alternating current and nanosecond pulse voltage[J]. Transactions of China Electrotechnial Society, 2019, 34(6): 1319-1328. [36] Fu Yanyan, Yang Chengxiong, Yan Xiuping.Metal-organic framework MIL-100(Fe) as the stationary phase for both normal-phase and reverse-phase high performance liquid chromatography[J]. Journal of Chromatography A, 2013, 1274: 137-144. |
|
|
|