|
|
1D Fluid Model of Catalytic Ammonia Synthesis Enhanced by Low Temperature Plasma |
Chen She1,2, Liu Hongmei1, Wu Ting1, Wang Feng1, Zhuang Chijie2 |
1. College of Electrical and Information Engineering Hunan University Changsha 410082 China; 2. State Key Laboratory of Control and Simulation of Power Systems and Generation Equipment Department of Electrical Engineering Tsinghua University Beijing 100084 China |
|
|
Abstract Ammonia has great application potential in the fields of chemical industry and energy storage. Low temperature plasma makes the reaction occur under mild conditions and has been experimentally proven to play an important role in enhanced-catalytic formation of ammonia. In the previous studies, the electric field and electron density were used as input parameters in the zero-dimensional kinetic models. However, their spatial information was ignored. Therefore, further modeling is needed to study the plasma catalysis mechanism. In this paper, a 1D fluid model of plasma-assisted catalytic ammonia synthesis is built under a plate-plate electrode configuration at atmospheric pressure. In the model, 47 species and 379 reactions, including gas-phase and hetero- geneous reactions on catalytic surface, are considered. The distribution of electric field, electron energy and electron density which affect the ammonia production are obtained. Furthermore, the effects of applied voltage, N2:H2 ratio content and free site density of catalyst surface on ammonia synthesis are discussed. The simulation results show that the ammonia yield first increases and then decreases as the applied voltage increases. The N2:H2 ratio of 1:2 is favor to the ammonia production. When the surface site density increases from1014 to 1018cm-2, the increase in ammonia yield is about 9.89%.
|
Received: 07 April 2020
|
|
Fund:国家自然科学基金(51977063)、湖南省自然科学基金(2020JJ5053)和电力系统国家重点实验室开放课题(SKLD19KZ01)资助项目 |
|
|
|
[1] Li Sirui, Medrano J J, Hessel V, et al.Recent progress of plasma-assisted nitrogen fixation research: a review[J]. Processes, 2018, 6(12): 248-256. [2] Carreon M L.Plasma catalytic ammonia synthesis: state of the art and future directions[J]. Journal of Physics D: Applied Physics, 2019, 52(48): 483001-483011. [3] Tanabe Y, Nishibayashi Y.Developing more sustainable processes for ammonia synthesis[J]. Coordination Chemistry Reviews, 2013, 257(17-18): 2551-2564. [4] Brown K A, Harris D F, Wilker M B, et al.Light- driven dinitrogen reduction catalyzed by a CdS: nitrogenase MoFe protein biohybrid[J]. Science, 2016, 352(6284): 448-450. [5] Liu Guangyi, Mba Wright M, Zhao Qingliang, et al.Hydrocarbon and ammonia production from catalytic pyrolysis of sewage sludge with acid pretreatment[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(3): 1819-1826. [6] Wang Kaige, Brown R C.Catalytic pyrolysis of microalgae for production of aromatics and ammo- nia[J]. Green Chemistry, 2013, 15(3): 675-681. [7] Aihara K, Akiyama M, Deguchi T, et al.Remarkable catalysis of a wool-like copper electrode for NH3 synthesis from N2 and H2 in non-thermal atmospheric plasma[J]. Chemical Communications, 2016, 52(93): 13560-13563. [8] Iwamoto M, Akiyama M, Aihara K, et al.Ammonia synthesis on wool-like Au, Pt, Pd, Ag, or Cu elec- trode catalysts in nonthermal atmospheric-pressure plasma of N2 and H2[J]. ACS Catalysis, 2017, 7(10): 6924-6929. [9] 戴栋, 宁文军, 邵涛. 大气压低温等离子体的研究现状与发展趋势[J]. 电工技术学报, 2017, 32(20): 1-9. Dai Dong, Ning Wenjun, Shao Tao.A review on the state of art and future trends of atmospheric pressure low temperature plasmas[J]. Transactions of China Electrotechnical Society, 2017, 32(20): 1-9. [10] 王晓玲, 高远, 张帅, 等. 脉冲参数对介质阻挡放电等离子体CH4干重整特性影响的实验[J]. 电工技术学报, 2019, 34(6): 1329-1337. Wang Xiaoling, Gao Yuan, Zhang Shuai, et al.Effects of pulse parameters on dry reforming of CH4 by pulsed DBD plasma[J]. Transactions of China Electrotechnical Society, 2019, 34(6): 1329-1337. [11] 高远, 张帅, 刘峰, 等. 脉冲介质阻挡放电等离子体催化CH4直接转化[J]. 电工技术学报, 2017, 32(2): 61-69. Gao Yuan, Zhang Shuai, Liu Feng, et al.Plasma enhanced CH4 direct conversion in pulsed dielectric barrier discharges[J]. Transactions of China Electro- technical Society, 2017, 32(2): 61-69. [12] Peng Peng, Li Yun, Cheng Yanling, et al.Atmo- spheric pressure ammonia synthesis using non- thermal plasma assisted catalysis[J]. Plasma Chemi- stry and Plasma Processing, 2016, 36(5): 1201-1210. [13] Hong J, Aramesh M, Shimoni O, et al.Plasma catalytic synthesis of ammonia using functionalized- carbon coatings in an atmospheric-pressure non- equilibrium discharge[J]. Plasma Chemistry and Plasma Processing, 2016, 36(4): 917-940. [14] Patil B S, van Kaathoven A S, Peeters F, et al. Deciphering the synergy between plasma and catalyst support for ammonia synthesis in a packed DBD reactor[J]. Journal of Physics D: Applied Physics, 2020, 53(14): 144003-144010. [15] Wang Yaolin, Craven M, Yu Xiaotong, et al.Plasma- enhanced catalytic synthesis of ammonia over a Ni/Al2O3 catalyst at near-room temperature: Insights into the importance of the catalyst surface on the reaction mechanism[J]. ACS Catalysis, 2019, 9(12): 10780-10793. [16] Bai Mindong, Zhang Zhitao, Bai Xiyao, et al.Plasma synthesis of ammonia with a microgap dielectric barrier discharge at ambient pressure[J]. IEEE Transa- ctions on Plasma Science, 2003, 31(6): 1285-1291. [17] Kim H, Teramoto Y, Ogata A, et al.Atmospheric- pressure nonthermal plasma synthesis of ammonia over ruthenium catalysts[J]. Plasma Processes and Polymers, 2016, 14(6): 1600157-1600164. [18] Mizushima T, Matsumoto K, Ohkita H, et al.Catalytic effects of metal-loaded membrane-like alumina tubes on ammonia synthesis in atmospheric pressure plasma by dielectric barrier discharge[J]. Plasma Chemistry and Plasma Processing, 2007, 27(1): 1-11. [19] 朱寒, 何湘, 陈秉岩, 等. 容性耦合射频放电等离子体的仿真模拟与实验诊断研究[J]. 电工技术学报, 2019, 34(16): 3504-3511. Zhu Han, He Xiang, Chen Bingyan, et al.Simulations and experimental diagnostic of capacitively coupled RF discharge plasma[J]. Transactions of China Electrotechnical Society, 2019, 34(16): 3504-3511. [20] Cui Yingzhe, Zhuang Chijie, Zeng Rong.Electric field measurements under negative DC corona discharges in ambient air by electric field induced second harmonic generation[J]. Applied Physics Letters, 2019, 115(24): 244101-244109. [21] Chen T, Goldberg B, Rousso A C, et al.Time- resolved measurements of electric field, electron temperature, and electron density in a nanosecond- pulsed dielectric barrier discharge[C]//AIAA Scitech 2020 Forum, Orlando FL, United States, 2020: 2148. [22] Wang Hai, Zeng Rong, Zhuang Chijie.Thermal variation of electric field sensor bias caused by anisotropy of LiNbO3[J]. Applied Physics Letters, 2019, 114(14): 143501-143509. [23] 荣命哲, 刘定新, 李美, 等. 非平衡态等离子体的仿真研究现状与新进展[J]. 电工技术学报, 2014, 29(6): 271-282. Rong Mingzhe, Liu Dingxin, Li Mei, et al.Research status and new progress on the numerical simulation of non-equilibrium plasmas[J]. Transactions of China Electrotechnical Society, 2014, 29(6): 271-282. [24] Wang Weizong, Mei Danhua, Tu Xin, et al.Gliding arc plasma for CO2 conversion: better insights by a combined experimental and modelling approach[J]. Chemical Engineering Journal, 2017, 330: 11-25. [25] Mehta P, Barboun P, Herrera F A, et al.Overcoming ammonia synthesis scaling relations with plasma- enabled catalysis[J]. Nature Catalysis, 2018, 1(4): 269-275. [26] Akay G, Zhang Kui.Process intensification in ammonia synthesis using novel coassembled supported micro- porous catalysts promoted by nonthermal plasma[J]. Industrial & Engineering Chemistry Research, 2017, 56(2): 457-468. [27] Carrasco E, Jimenez-Redondo M, Tanarro I, et al.Neutral and ion chemistry in low pressure DC plasmas of H2/N2 mixtures: routes for the efficient production of NH3 and NH4+[J]. Physical Chemistry Chemical Physics, 2011, 13(43): 19561-19572. [28] Shah J, Wang Weizong, Bogaerts A, et al.Ammonia synthesis by radio frequency plasma catalysis: revealing the underlying mechanisms[J]. ACS Applied Energy Materials, 2018, 1(9): 4824-4839. [29] Hong J, Pancheshnyi S, Tam E, et al.Kinetic modelling of NH3 production in N2-H2 non-equilibrium atmospheric-pressure plasma catalysis[J]. Journal of Physics D: Applied Physics, 2017, 50(15): 154005-154038. [30] Gordiets B, Ferreira C M, Pinheiro M J, et al.Self-consistent kinetic model of low-pressure N2-H2 flowing discharges: I. volume processes[J]. Plasma Sources Science and Technology, 1998, 7(3): 363-378. [31] Bogaerts A, Neyts E C.Plasma technology: an emerging technology for energy storage[J]. ACS Energy Letters, 2018, 3(4): 1013-1027. [32] 夏亚龙, 林莘, 徐建源, 等. 非平衡态SF6等离子体弛豫特性研究[J]. 电工技术学报, 2018, 33(5): 1125-1132. Xia Yalong, Lin Xin, Xu Jianyuan, et al.Study on the relaxation characteristics of non-equilibrium SF6 plasma[J]. Transactions of China Electrotechnical Society, 2018, 33(5): 1125-1132. [33] 万静, 宁文军, 张雨晖, 等. 气隙宽度对大气压氦气介质阻挡放电多脉冲特性影响的仿真研究[J]. 电工技术学报, 2019, 34(4): 871-879. Wan Jing, Ning Wenjun, Zhang Yuhui, et al.Influence of gap width on the multipeak characteri- stics of atmospheric pressure helium dielectric barrier discharges-a numerical approach[J]. Transactions of China Electrotechnical Society, 2019, 34(4): 871-879. |
|
|
|