|
|
Single-Ended Protection Method for UHVDC Transmission Line Based on Hilbert Energy Amplitude Information and Waveform Information |
Fan Yanfang1, Wang Yongjin2 |
1. School of Electrical Engineering Xinjiang University Urumqi 830047 China; 2. State Grid Urumqi Power Supply Company Urumqi 830011 China |
|
|
Abstract The DC transmission system has strong nonlinearity. The traveling wave protection of DC transmission line using the superposition principle and wavelet transform algorithm has the adaptability problems. The traveling wave protection of DC transmission lines only uses the amplitude information of traveling wave transient. There is a problem with protection refusal at the end of the fault. Aiming at this problem, a single-ended protection method for UHVDC transmission line is proposed. By studying the physical boundary characteristics at both ends of the UHVDC transmission line, the relationship between the Hilbert energy waveform information and the voltage traveling wave is derived, and the physical boundary is smoothed to the Hilbert energy waveform. The physical boundary element and the frequency characteristics of the DC transmission line are analyzed. It is found that the physical boundary element and the DC transmission line have attenuating the transient high-frequency component, and the Hilbert energy is used to characterize the attenuation of the high-frequency component. In the case of faults in the DC transmission line, the transient energy amplitude and waveform shape of the high-frequency transient band 5~7kHz are obviously different. The standard deviation is used to describe the high-band Hilbert instantaneous energy amplitude information and waveform information to construct DC. Transmission line fault identification criteria. The fault selection criterion is constructed by using the ratio of the standard deviation of the positive and negative poles to realize the full-line quick-action protection of the fault pole. The simulation results show that the protection method can reliably distinguish faults in the DC line and outside, realize fault selection, and protect the full length of UHVDC lines.
|
Received: 10 March 2020
|
|
|
|
|
[1] 滕予非, 李小鹏, 林圣, 等. 特高压直流系统接地极线路阻抗监视系统适应性研究[J]. 电工技术学报, 2019, 34(19) : 4154-4161. Teng Yufei, Li Xiaopeng, Lin Sheng, et al.Adaptability analysis of fault supervision systemfor long electrode line of UHVDC[J]. Transactions of China Electrotechnical Society, 2019, 34(19) : 4154-4161. [2] 陈玉, 文明浩, 王祯, 等. 基于低频电气量的超高压交流线路出口故障快速保护[J]. 电工技术学报, 2020, 35(11): 2415-2426. Chen Yu, Wen Minghao, Wang Yan, et al.A high speed protection scheme for outgoing line fault of HVAC transmission lines based on low frequency components[J]. Transactions of China Electrotechnical Society, 2020, 35(11): 2415-2426. [3] 贾科, 赵其娟, 冯涛, 等. 柔性直流配电系统高频突变量距离保护[J]. 电工技术学报, 2020, 35(2): 383-394. Jia Ke, Zhao Qijuan, Feng Tao, et al.High-frequency fault component distance protection for flexible DC distribution system[J]. Transactions of China Electrotechnical Society, 2020, 35(2): 383-394. [4] 束洪春, 刘可真, 朱盛强, 等. ±800kV特高压直流输电线路单端电气量暂态保护[J]. 中国电机工程学报, 2010, 30(31): 108-117. Shu Hongchun, Liu Kezhen, Zhu Shengqiang, et al.±800kV UHVDC transmission line protection based on single end electrical transient signal[J]. Proceedings of the CSEE, 2010, 30(31): 108-117. [5] 李振强, 鲁改凤, 吕艳萍. 基于小波变换的高压直流输电线路暂态电压行波保护[J]. 电力系统保护与控制, 2010, 38(13): 40-45. Li Zhenqiang, Lu Jianfeng, Lü Yanping.A novel scheme of HVDC transmission line voltage traveling wave protection based on wavelet transform[J]. Power System Protection and Control, 2010, 38(13): 40-45. [6] 齐国强, 王增平. 基于Hilbert-Huang变换的HVDC突变量方向纵联保护方法[J]. 电力系统保护与控制, 2017, 45(20): 92-99. Qi Guoqiang, Wang Zengping.Directional pilot protection method of fault component for HVDC transmission lines based on Hilbert-Huang transform[J]. Power System Protection and Control, 2017, 45(20): 92-99. [7] 高淑萍, 索南加乐, 宋国兵, 等. 利用电流突变特性的高压直流输电线路纵联保护新原理[J]. 电力系统自动化, 2011, 35(5): 52-56. Gao Shuping, Sunan Jiale, Song Guobing, et al.Design and simulation of an improved control strategy for variable-speed pitch controlled wind turbine driven generator system[J]. Automation of Electric Power Systems, 2011, 35(5): 52-56. [8] 邢鲁华, 陈青, 付兆远, 等. 基于电压和电流突变量的高压直流输电线路保护原理[J]. 电力系统自动化, 2012, 36(9): 61-66. Xing Luhua, Chen Qing, Fu Zhaoyuan, et al.Protection principle for HVDC transmission lines based on fault component of voltage and current[J]. Automation of Electric Power Systems, 2012, 36(9): 61-66. [9] 李振兴, 谭洪, 叶诗韵, 等. 应用ΔI极性与信号处理的UHVDC输电线路保护新方案[J]. 电力系统保护与控制, 2018, 46(15): 68-75. Li Zhenxing, Tan Hong, Ye Shiyun, et al.A new scheme for UHVDC transmission line protection using ΔI polarity and signal processing[J]. Power System Protection and Control, 2018, 46(15): 68-75. [10] 陈仕龙, 张杰, 毕贵红, 等. 一种基于高频量衰减特性的特高压直流输电线路故障测距方法[J]. 电力系统保护与控制, 2014, 42(10): 77-83. Chen Shilong, Zhang Jie, Bi Guihong, et al.A fault location method based on high frequency attenuation characteristic of UHVDC transmission line[J]. Power System Protection and Control, 2014, 42(10): 77-83. [11] 赵成勇, 赵强. HVDC附近继电保护装置中工频故障分量元件的适用性分析[J]. 电网技术, 2010, 34(3): 188-192. Zhao Chengyong, Zhao Qiang.Analysis on applicability of fundamental frequency fault component element of protective relayings near to HVDC transmission line[J]. Power System Technology, 2010, 34(3): 188-192. [12] 段建东, 刘静, 陆海龙, 等. 基于行波瞬时频率的高压直流输电线路故障测距方法[J]. 中国电机工程学报, 2016, 36(7): 1842-1848. Duan Jiandong, Liu Jing, Lu Hailong, et al.Fault location method based on traveling-wave instantaneous frequency for HVDC transmission lines[J]. Proceedings of the CSEE, 2016, 36(7): 1842-1848. [13] 娄二军. 基于PSCAD/EMTDC的特高压直流输电线路保护的研究[D]. 广州: 华南理工大学, 2013. [14] 王聪博, 贾科, 赵其娟, 等. 基于故障全电流相关性检验的柔性直流配电线路纵联保护[J]. 电工技术学报, 2020, 35(8): 1764-1775. Wang Congbo, Jia Ke, Zhao Qijuan, et al.Pilot protection for flexible-DC distribution line based on correlation test of DC current[J]. Transactions of China Electrotechnical Society, 2020, 35(8): 1764-1775. [15] 许小雪, 刘建锋, 江玉蓉. 基于多频带能量的高压直流输电线路单端暂态电流保护[J]. 电力系统保护与控制, 2016, 44(22): 32-39. Xu Xiaoxue, Liu Jianfeng, Jiang Yurong.HVDC transmission line protection based on single-ended transient current using multiband energy[J]. Power System Protection and Control, 2016, 44(22): 32-39. [16] 杨亚宇, 邰能灵, 刘剑, 等. 利用边界能量的高压直流线路纵联保护方案[J]. 中国电机工程学报, 2015, 35(22): 5757-5767. Yang Yayu, Tai Ningling, Liu Jian, et al.A pilot protection scheme for HVDC transmission lines based on boundary energy[J]. Proceedings of the CSEE, 2015, 35(22): 5757-5767. [17] 高本锋, 张学伟, 刘辛晔, 等. 高压直流输电保护定值整定流程的研究[J]. 电工技术学报, 2015, 30(12): 400-407. Gao Benfeng, Zhang Xuewei, Liu Xinyi, et al.Research of HVDC protection value setting process[J]. Transactions of China Electrotechnical Society, 2015, 30(12): 400-407. [18] 戴志辉, 刘宁宁, 何永兴, 等. 基于直流滤波环节暂态能量比的高压直流线路纵联保护[J]. 电工技术学报, 2020, 35(9): 1985-1998. Dai Zhihui, Liu Ningning, He Yongxing, et al.A pilot protection for HVDC transmission lines based on the ratio of DC filter link transient energy[J]. Transactions of China Electrotechnical Society, 2020, 35(9): 1985-1998. [19] 王永进, 樊艳芳. 基于反行波与信号处理的特高压直流输电线路纵联保护方法[J]. 电力自动化设备, 2020, 40(3): 114-121. Wang Yongjin, Fan Yanfang.Longitudinal protection method based on reverse traveling wave and signal processing for UHVDC power transmission line[J]. Electric Power Automation Equipment, 2020, 40(3): 114-121. |
|
|
|