|
|
Hybrid Energy Storage Smoothing Output Fluctuation Strategy Considering Photovoltaic Dual Evaluation Indicators |
Zheng Hao1, Xie Lirong1, Ye Lin2, Lu Peng2, Wang Kaifeng1,3 |
1. Wind and Solar Storage Branch of National Key Laboratory of Power System and Power Generation Equipment Control and Simulation Xinjiang University Urumqi 830047 China; 2. College of Information and Electrical Engineering China Agricultural University Beijing 100083 China; 3. State Key Lab of Control and Simulation of Power Systems and Generation Equipments Tsinghua University Beijing 100084 China |
|
|
Abstract Aiming at the problem of photovoltaic active power fluctuations affecting the stable operation of the power grid, a hybrid energy storage smoothing output fluctuation control strategy considering the dual evaluation indicators of photovoltaics is proposed. Firstly, according to different time scales, two evaluation indicators with volatility and smoothness as smoothing output fluctuation targets are established. Secondly, based on the improved ensemble empirical mode decomposition (MEEMD) method, the photovoltaic active power signal is decomposed, and the power is reconstructed into high-frequency and low-frequency parts with the gray correlation degree, and the commands of final high-frequency supercapacitor and low-frequency battery smoothing output fluctuation are obtained. Then, the moving average filter smooth curve is used as the charge/discharge target reference power to obtain the charge/discharge power commands of the hybrid energy storage instruction, and use a hybrid energy storage battery pack composed of batteries and supercapacitors to smooth output fluctuations at a time scale of 5min and a single battery pack composed of supercapacitors to smooth smoothness at a time scale of 1min. The smoothness follows the smooth output fluctuations, then getting different time scales of energy storage system priority smoothing output fluctuation strategy. Finally, taking a photovoltaic power station in Xinjiang as an example, a comprehensive comparison of various photovoltaic power decomposition methods and different evaluation indicators verifies the effectiveness of the proposed strategy.
|
Received: 18 August 2020
|
|
|
|
|
[1] 李涛, 胡维昊, 李坚, 等. 基于深度强化学习算法的光伏-抽蓄互补系统智能调度[J]. 电工技术学报, 2020, 35(13): 2757-2768. Li Tao, Hu Weihao, Li Jian, et al.Intelligent economic dispatch for PV-PHS integrated system: a deep reinforcement learning-based approach[J]. Transactions of China Electrotechnical Society, 2020, 35(13): 2757-2768. [2] Zhang Xing, Wang Mingda, Zhao Tao, et al.Topological comparison and analysis of medium-voltage and high-power direct-linked PV inverter[J]. CES Transactions on Electrical Machines and Systems, 2019, 3(4): 327-334. [3] 李建林, 田立亭, 来小康. 能源互联网背景下的电力储能技术展望[J]. 电力系统自动化, 2015, 39(23): 15-22. Li Jianlin, Tian Liting, Lai Xiaokang.Outlook of electrical energystorage technologies under energy internet background[J]. Automation of Electric Power Systems, 2015, 39(23): 15-22. [4] 刁涵彬, 李培强, 王继飞, 等. 考虑电/热储能互补协调的综合能源系统优化调度[J]. 电工技术学报, 2020, 35(21): 4532-4543. Diao Hanbin, Li Peiqiang, Wang Jifei, et al.Optimal dispatch of integrated energy system considering complementary coordination of electric/thermal energy storage[J]. Transactions of China Electrote-chnical Society, 2020, 35(21): 4532-4543. [5] 颜湘武, 宋子君, 崔森, 等. 基于变功率点跟踪和超级电容器储能协调控制的双馈风电机组一次调频策略[J]. 电工技术学报, 2020, 35(3): 530-541. Yan Xiangwu, Song Zijun, Cui Sen, et al.Primary frequency regulation strategy of doubly-fed wind turbine based on variable power point tracking and supercapacitor energy storage[J]. Transactions of China Electrotechnical Society, 2020, 35(3): 530-541. [6] 陈亚爱, 林演康, 王赛, 等. 基于滤波分配法的混合储能优化控制策略[J]. 电工技术学报, 2020, 35(19): 4009-4018. Chen Yaai, Lin Yankang, Wang Sai, et al.Optimal control strategy of hybrid energy storage based on filter allocation method[J]. Transactions of China Electrotechnical Society, 2020, 35(19): 4009-4018. [7] 熊雄, 王江波, 杨仁刚. 基于小波包分解-概率模糊集特定策略下马尔可夫决策过程的微电网公共耦合点功率优化控制[J]. 电工技术学报, 2017, 32(22): 189-197. Xiong Xiong, Wang Jiangbo, Yang Rengang.Microgrid PCC power optimal control with Markov decision process using the specific policy of wavelet packet-probability fuzzy set[J]. Transactions of China Electrotechnical Society, 2017, 32(22): 189-197. [8] 吴振威, 蒋小平, 马会萌, 等. 用于混合储能平抑光伏波动的小波包-模糊控制[J]. 中国电机工程学报, 2014, 34(3): 317-324. Wu Zhenwei, Jiang Xiaoping, Ma Huimeng, et al.Wave let pack-et-fuzzy control for the hybrid energy storage to control photovoltaic fluctuations[J]. Proceedings of the CSEE, 2014, 34(3): 317-324. [9] 田崇翼, 李珂, 严毅, 等. 基于经验模式分解的风电场多时间尺度复合储能控制策略[J]. 电网技术, 2015, 39(8): 2167-2172. Tian Chongyi, Li Ke, Yan Yi, et al.A multi-time scale control strategy of hybrid energy storage system in wind farm based on empirical mode decomposition[J]. Power System Technology, 2015, 39(8): 2167-2172. [10] 付菊霞, 陈洁, 滕扬新, 等. 基于集合经验模态分解的风电混合储能系统能量管理协调控制策略[J]. 电工技术学报, 2019, 34(10): 2038-2046. Fu Juxia, Chen Jie, Teng Yangxin, et a1. Energy management coordination control strategy for wind power hybrid energy storage system based on EEMD[J]. Transactions of China Electrotechnical Society, 2019, 34(10): 2038-2046. [11] 贾燕冰, 郑晋, 陈浩, 等. 基于集合经验模态分解的火-储联合调度调频储能容量优化配置[J]. 电网技术, 2018, 42(9): 2930-2937. Jia Yanbing, Zheng Jin, Chen Hao, et a1. Capacity allocation optimization of energy storage in thermal-storage frequency regulation dispatch system based on EEMD[J]. Power System Technology, 2018, 42(9): 2930-2937. [12] Ye Lin, Zhang Cihang, Tang Yong, et al.Hierarchical model predictive control strategy based on dynamic active power dispatch for wind power cluster integration[J]. IEEE Transactions on Power Systems, 2019, 34(6): 4617-4629. [13] 桑丙玉, 王德顺, 杨波, 等. 平滑新能源输出波动的储能优化配置方法[J]. 中国电机工程学报, 2014, 34(22): 3700-3706. Sang Bingyu, Wang Deshun, Yang Bo, et a1. Optimal allocation of energy storage system for smoothing the output fluctuations of new energy[J]. Proceedings of the CSEE, 2014, 34(22): 3700-3706. [14] 马伟, 王玮, 吴学智, 等. 平抑光伏并网功率波动的混合储能系统优化调度策略[J]. 电力系统自动化, 2019, 43(3): 58-69. Ma Wei, Wang Wei, Wu Xuezhi, et a1. Optimal dispatching strategy of hybrid energy storage system for smoothing power fluctuation caused by grid-connected photovoltaic[J]. Automation of Electric Power Systems, 2019, 43(3): 58-69. [15] Lei Mingyu, Yang Zilong, Wang Yibo, et al.A MPC based ESS control method for PV power smoothing applications[J]. IEEE Transactions on Power Electronics, 2017, 33(3): 2136-2144. [16] 刘春燕, 晁勤, 魏丽丽. 基于实证数据和模糊控制的多时间尺度风储耦合实时滚动平抑波动[J]. 电力自动化设备, 2015, 35(2): 35-41. Liu Chunyan, Chao Qin, Wei Lili.Wind-storage coupling based on actual data and fuzzy control in multiple time scales for real-time rolling smoothing of fluctuation[J]. Electric Power Automation Equipment, 2015, 35(2): 35-41. [17] 李亚楠, 王倩, 宋文峰, 等. 混合储能系统平滑风电出力的变分模态分解-模糊控制策略[J]. 电力系统保护与控制, 2019, 47(7): 58-65. Li Yanan, Wang Qian, Song Wenfeng, et a1. Variational mode decomposition and fuzzy control strategy of hybrid energy storage for smoothing wind power outputs[J]. Power System Protection and Control, 2019, 47(7): 58-65. [18] 国家电网公司. Q/GDW 1617—2015光伏电站接入电网技术规定[S]. 北京: 中国电力出版社, 2016. [19] Li Xiangjun, Hui Dong, Lai Xiaokang.Battery energy storage sta tion(BESS)-based smoothing control of photovoltaic(PV) and wind power generation fluctuations[J]. IEEE Transactions on Sustainable Energy, 2013, 4(2): 464-473. [20] 李相俊, 张晶琼, 何宇婷, 等. 基于自适应动态规划的储能系统优化控制方法[J]. 电网技术, 2016, 40(5): 1355-1362. Li Xiangjun, Zhang Jingqiong, He Yuting, et a1. Optimal control method of energy storage system based on adaptive dynamic programming[J]. Power System Technology, 2016, 40(5): 1355-1362. [21] 郑近德, 程军圣, 杨宇. 改进的EEMD算法及其应用研究[J]. 振动与冲击, 2013, 32(21): 21-26, 46. Zheng Jinde, Cheng Junsheng, Yang Yu.Modified EEMD algorithm and its applications[J]. Journal of Vibration and Shock, 2013, 32(21): 21-26, 46. [22] 吴鸣, 李振伟, 孙丽敬. 一种混合储能变换器的模型预测整体控制方法[J]. 电力系统保护与控制, 2020, 48(21): 84-91. Wu Ming, Li Zhenwei, Sun Lijing.A model predictive overall control method for a hybrid energy storage converter[J]. Power System Protection and Control, 2020, 48(21): 84-91. [23] Yang P, Nehorai A.Joint optimization of hybrid energy storage and generation capacity with renewable energy[J]. IEEE Transactions on Smart Grid, 2014, 5(4): 1566-1574. |
|
|
|