|
|
External Thermal Management of IGBT Based on State Feedback Linearization |
Sun Lin, Sun Pengju, Luo Quanming, Wang Xulong, Zhou Luowei |
State Key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing University Chongqing 400044 China |
|
|
Abstract Thermal management technology for insulated gate bipolar transistor (IGBT) can reduce junction temperature fluctuations during operation and improve the reliability of devices. In view of the nonlinear characteristics of the IGBT external thermal management system, an affine non-linear model of the system was established. The state feedback linearization method was introduced to linearize the system, which makes up for the current lack of accurate mathematical models in the design of IGBT thermal management control systems. Based on a linear quadratic regulator (LQR), a closed-loop control method was designed to smooth the low-frequency junction temperature fluctuations caused by load fluctuations during IGBT operation by adjusting external cooling conditions. The experimental verification based on the Buck circuit shows that the proposed algorithm can reduce the junction temperature fluctuation by about 60% and increase the life of the IGBT by about 69 times when the load current fluctuates within the range of 60%~100% of the rated value. Finally, the junction temperature was measured online based on the small current injection method, which verified the accuracy of the junction temperature calculation by the proposed model.
|
Received: 07 January 2020
|
|
|
|
|
[1] Blaabjerg F, Liserre M, Ma Ke.Power electronics converters for wind turbine systems[J]. IEEE Transa- ctions on Industry Applications, 2012, 48(2): 708-719. [2] 王学梅, 张波, 吴海平. 基于失效物理的功率器件疲劳失效机理[J]. 电工技术学报, 2019, 34(4): 717-727. Wang Xuemei, Zhang Bo, Wu Haiping.A review of fatigue mechanism of power devices based on physics-of-failure[J]. Transactions of China Electro- technical Society, 2019, 34(4): 717-727. [3] Yang Yongheng, Sangwongwanich A, Blaabjerg F.Design for reliability of power electronics for grid- connected photovoltaic systems[J]. CPSS Transa- ctions on Power Electronics and Applications, 2016, 1(1): 92-103. [4] 刘向向, 李志刚, 姚芳. 不同工作模式下的IGBT模块瞬态热特性退化分析[J]. 电工技术学报, 2019, 34(增刊2): 509-517. Liu Xiangxiang, Li Zhigang, Yao Fang.Analysis of transient thermal degradation of IGBT modules under different operating modes[J]. Transactions of China Electrotechnical Society, 2019, 34(S2): 509-517. [5] Wang Bo, Cai Jie, Du Xiong, et al.Review of power semiconductor device reliability for power con- verters[J]. CPSS Transactions on Power Electronics and Applications, 2017, 2(2): 101-117. [6] Yang Shaoyong, Bryant A, Mawby P, et al.An industry-based survey of reliability in power elec- tronic converters[J]. IEEE Transactions on Industry Applications, 2011, 47(3): 1441-1451. [7] Wu Junke, Zhou Luowei, Sun Pengju, et al.Smooth control of insulated gate bipolar transistors junction temperature in a small-scale wind power converter[J]. IET Power Electronics, 2016, 9(3): 393-400. [8] 周雒维, 张益, 王博. 一种基于调节缓冲电容的IGBT热管理方法[J]. 电机与控制学报, 2019, 23(4): 28-36. Zhou Luowei, Zhang Yi, Wang Bo.IGBT thermal management method based on snubber capacitor[J]. Electric Machines and Control, 2019, 23(4): 28-36. [9] 吴军科, 周雒维, 王博, 等. 基于开关轨迹动态调整的变流器内部热管理[J]. 电源学报, 2016, 14(6): 46-52. Wu Junke, Zhou Luowei, Wang Bo, et al.Internal thermal management of power converter based on switching trace adjustment[J]. Journal of Power Supply, 2016, 14(6): 46-52. [10] Weckert M, Roth-Stielow J.Lifetime as a control variable in power electronic systems[C]//Emobility- Electrical Power Train, Leipzig, 2010: 1-6. [11] 周雒维, 王博, 张益, 等. 非平稳工况下功率半导体器件结温管理技术综述[J]. 中国电机工程学报, 2018, 38(8): 2394-2407, 2549. Zhou Luowei, Wang Bo, Zhang Yi, et al.Review on junction temperature management of power Semi- conductor devices under power fluctuation con- dition[J]. Proceedings of the CSEE, 2018, 38(8): 2394-2407, 2549. [12] Wang Xiang, Castellazzi A, Zanchetta P.Observer based temperature control for reduced thermal cycling in power electronic cooling[J]. Applied Thermal Engineering, 2014, 64(1-2): 10-18. [13] Wang Xiang, Wang Yun, Castellazzi A.Reduced active and passive thermal cycling degradation by dynamic active cooling of power modules[C]//IEEE 27th International Symposium on Power Semi- conductor Devices & IC's (ISPSD), Hong Kong, 2015: 309-312. [14] Davidson J N, Stone D A, Foster M P.Real-time temperature monitoring and control for power electronic systems under variable active cooling by characterisation of device thermal transfer impe- dance[C]//7th IET International Conference on Power Electronics, Manchester, 2014: 1-6. [15] Li Cong, Jiao Da, Jia Jizhou, et al.Thermoelectric cooling for power electronics circuits: modeling and active temperature control[J]. IEEE Transactions on Industry Applications, 2014, 50(6): 3995-4005. [16] 姜长生, 吴庆宪, 费树岷. 现代非线性系统鲁棒控制基础[M]. 哈尔滨: 哈尔滨工业大学出版社, 2012. [17] Murdock D A, Torres J E, Ramos T, et al.Active thermal control of power electronic modules[J]. IEEE Transactions on Industry Applications, 2006, 42(2): 552-558. [18] Ciappa M.Selected failure mechanisms of modern power modules[J]. Microelectronics & Reliability, 2002, 42(4-5): 653-667. [19] Scheuermann U, Hecht U.Power cycling lifetime of advanced power modules for different temperature swings[C]//8th PCIM Nuremberg, 2002: 59-64. [20] 王希平, 李志刚, 姚芳. 模块化多电平换流阀IGBT器件功率损耗计算与结温探测[J]. 电工技术学报, 2019, 34(8): 1636-1646. Wang Xiping, Li Zhigang, Yao Fang, et al.Power loss calculation and junction temperature detection of IGBT devices for modular multilevel valve[J]. Transa- ctions of China Electrotechnical Society, 2019, 34(8): 1636-1646. [21] Azoui T, Tounsi P, Pasquet G, et al.Dynamic compact thermal model for electrothermal modeling and design optimization of automotive power devices[C]// Thermal Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Micro- systems (EuroSimE), Linz, 2011: 1-6. [22] Ma Ke, Liserre M, Blaabjerg F, et al.Thermal loading and lifetime estimation for power device considering mission profiles in wind power converter[J]. IEEE Transactions on Power Electronics, 2015, 30(2): 590-602. [23] 帅定新, 谢运祥, 杨金明, 等. 基于状态反馈精确线性化单相全桥逆变器的最优控制[J]. 电工技术学报, 2009, 24(11): 120-126. Shuai Dingxin, Xie Yunxiang, Yang Jinming, et al.Optimal control of single-phase full-bridge inverters by state feedback linearization[J]. Transactions of China Electrotechnical Society, 2009, 24(11): 120-126. [24] 姚芳, 胡洋, 李铮, 等. 基于结温监测的风电IGBT热安全性和寿命耗损研究[J]. 电工技术学报, 2018, 33(9): 2024-2033. Yao Fang, Hu Yang, Li Zheng, et al.Study on thermal safety and lifetime consumption of IGBT in wind power converters based on junction temperature monitoring[J]. Transactions of China Electrotechnical Society, 2018, 33(9): 2024-2033. [25] Bęczkowski S, Ghimre P, de Vega A R, et al. Online vce measurement method for wear-out monitoring of high power IGBT modules[C]//15th European Confer- ence on Power Electronics and Applications (EPE), Lille, 2013: 1-7. [26] 王莉娜, 邓洁, 杨军一, 等. Si和SiC功率器件结温提取技术现状及展望[J]. 电工技术学报, 2019, 34(4): 703-716. Wang Lina, Deng Jie, Yang Junyi, et al.Junction temperature extraction methods for Si and SiC power devices-a review and possible alternatives[J]. Transa- ctions of China Electrotechnical Society, 2019, 34(4): 703-716. [27] 任磊, 沈茜, 龚春英. 电力电子电路中功率晶体管结温在线测量技术研究现状[J]. 电工技术学报, 2018, 33(8): 1750-1761. Ren Lei, Shen Qian, Gong Chunying.Overview of current junction temperature online measurement techniques of power transistors in power electronic converters[J]. Transactions of China Electrotechnical Society, 2018, 33(8): 1750-1761. |
|
|
|