|
|
Continuous-Time Modeling Based Robust Unit Commitment Considering Beyond-the-Resolution Wind Power Uncertainty |
Zhou Bo, Ai Xiaomeng, Fang Jiakun, Yao Wei, Wen Jinyu |
State Key Laboratory of Advanced Electromagnetic Engineering and Technology Huazhong University of Science and Technology Wuhan 430074 China |
|
|
Abstract With the increasing penetration of wind power in the power system, the intra-period fluctuation of wind power gets more and more violent, which may induce the scarcity of intra-period ramping capacity and threaten the intra-period operational security of the power system. In this paper, the model and solution algorithm of continuous-time modeling based robust unit commitment is proposed considering beyond-the-resolution (BtR) wind power uncertainties, which can fully access the intra-period wind power variation and give the robust solution to the BtR uncertainties. First, the continuous-time robust unit commitment model considering BtR uncertainties is established, and the BtR uncertainty model is analyzed. Second, by the solution space transformation, the optimization problem is shifted from the algebraic space to the function space for tractable computation. The column-and-constraint generation (C&CG) algorithm is adopted to solve the optimization problem in the function space and the solution is then recovered to the algebraic space. Finally, the simulation results validate that BtR uncertainties can be fully considered in the proposed method so as to enhance the robustness of the scheduling solution.
|
Received: 11 July 2020
|
|
|
|
|
[1] International Renewable Energy Agency. Renewable energy statistics 2020[R]. Abu Dhabi: International Renewable Energy Agency, 2020. [2] 国家能源局. 2019 年风电并网运行情况[EB/OL]. 北京: 国家能源局, 2020[2020-02-28]. http:// www.nea.gov.cn/2020-02/28/c_138827910.htm. [3] 易文飞, 张艺伟, 曾博, 等. 多形态激励型需求侧响应协同平衡可再生能源波动的鲁棒优化配置[J]. 电工技术学报, 2018, 33(23): 5541-5554. Yi Wenfei, Zhang Yiwei, Zeng Bo, et al.Robust optimization allocation for multi-type incentive-based demand response collaboration to balance renewable energy fluctuations[J]. Transactions of China Electrotechnical Society, 2018, 33(23): 5541-5554. [4] 别朝红, 林超凡, 李更丰, 等. 能源转型下弹性电力系统的发展与展望[J]. 中国电机工程学报, 2020, 40(9): 2735-2745. Bie Zhaohong, Lin Chaofan, Li Gengfeng, et al.Development and prospect of resilient power system in the context of energy transition[J]. Proceedings of the CSEE, 2020, 40(9): 2735-2745. [5] 唐程辉, 张凡, 张宁, 等. 基于风电场总功率条件分布的电力系统经济调度二次规划方法[J]. 电工技术学报, 2019, 34(10): 2069-2078. Tang Chenghui, Zhang Fan, Zhang Ning, et al.Quadratic programming for power system economic dispatch based on the conditional probability distribution of wind farms sum power[J]. Transactions of China Electrotechnical Society, 2019, 34(10): 2069-2078. [6] 葛晓琳, 郝广东, 夏澍, 等. 考虑规模化电动汽车与风电接入的随机解耦协同调度[J]. 电力系统自动化, 2020, 44(4): 54-62. Ge Xiaolin, Hao Guangdong, Xia Shu, et al.Stochastic decoupling collaborative dispatch considering integration of large-scale electric vehicles and wind power[J]. Automation of Electric Power Systems, 2020, 44(4): 54-62. [7] 张艺镨, 艾小猛, 方家琨, 等. 基于极限场景的两阶段含分布式电源的配网无功优化[J]. 电工技术学报, 2018, 33(2): 380-389. Zhang Yipu, Ai Xiaomeng, Fang Jiakun, et al.Two-stage reactive power optimization for distribution network with distributed generation based on extreme scenarios[J]. Transactions of China Electrotechnical Society, 2018, 33(2): 380-389. [8] Zhou Bo, Ai Xiaomeng, Fang Jiakun, et al.Data-adaptive robust unit commitment in the hybrid AC/DC power system[J]. Applied Energy, 2019, 254: 113784. [9] 高晓松, 李更丰, 肖遥, 等. 基于分布鲁棒优化的电-气-热综合能源系统日前经济调度[J]. 电网技术, 2020, 44(6): 2245-2254. Gao Xiaosong, Li Gengfeng, Xiao Yao, et al.Day-ahead economical dispatch of electricity-gas-heat integrated energy system based on distributionally robust optimization[J]. Power System Technology, 2020, 44(6): 2245-2254. [10] Milligan M, Kirby B.Analysis of sub-hourly ramping impacts of wind energy and balancing area size[R]. National Renewable Energy Lab (NREL), 2008. [11] Gangammanavar H, Sen S, Zavala V.Stochastic optimization of sub-hourly economic dispatch with wind energy[J]. IEEE Transactions on Power Systems, 2016, 31(2): 949-959. [12] Bakirtzis E, Biskas P.Multiple time resolution stochastic scheduling for systems with high renewable penetration[J]. IEEE Transactions on Power Systems, 2017, 32(2): 1030-1040. [13] 栗然, 韩怡, 丁星, 等. 基于表达谱的时间粒度自适应调度模式[J/OL]. 电力系统自动化[2020-09-15]. http://kns.cnki.net/kcms/detail/32.1180.TP. 20200731. 1431.004.html. Li Ran, Han Yi, Ding Xing, at al. Time-granularity adaptive dispatch mode based on expression spectrum. [J/OL]. Automation of Electric Power Systems [2020-09-15]. http://kns.cnki.net/kcms/detail/32.1180.TP. 20200731.1431.004.html. [14] Pineda S, Fernandez-Blanco R, Morales J.Time-adaptive unit commitment[J]. IEEE Transactions on Power Systems, 2019, 34(5): 3869-3878. [15] 吴雅仪, 陈红坤, 徐坤领, 等. 考虑双时间尺度调度周期的储能最优容量配置[J]. 电力系统保护与控制, 2018, 46(5): 106-113. Wu Yayi, Chen Hongkun, Xu Kunling, et al.Optimal capacity allocation of energy storage system considering two time scale scheduling cycles[J]. Power System Protection and Control, 2018, 46(5): 106-113. [16] 艾小猛, 韩杏宁, 文劲宇, 等. 考虑风电爬坡事件的鲁棒机组组合[J]. 电工技术学报, 2015, 30(24): 188-195. Ai Xiaomeng, Han Xingning, Wen Jingyu, et al.Robust unit commitment considering wind power ramp events[J]. Transactions of China Electrotechnical Society, 2015, 30(24): 188-195. [17] 张利, 杨建, 菅学辉, 等. 考虑次小时尺度运行灵活性的含储能机组组合[J]. 电力系统自动化, 2018, 42(16): 48-56. Zhang Li, Yang Jian, Jian Xuehui, et al.Review of coupled system between power and natural gas network[J]. Automation of Electric Power Systems, 2018, 42(16): 48-56. [18] Parvania M, Scaglione A.Unit commitment with continuous-time generation and ramping trajectory models[J]. IEEE Transactions on Power Systems, 2016, 31(4): 3169-3178. [19] Khatami R, Parvania M, Khargonekar P.Scheduling and pricing of energy generation and storage in power systems[J]. IEEE Transactions on Power Systems, 2018, 33(4): 4308-4322. [20] Nikoobakht A, Aghaei J, Shafie-Khah M, et al.Continuous-time co-operation of integrated electricity and natural gas systems with responsive demands under wind power generation uncertainty[J]. IEEE Transactions on Smart Grid, 2020, 11(4):3156-3170. [21] Khatami R, Parvania M.Stochastic multi-fidelity scheduling of flexibility reserve for energy storage[J]. IEEE Transactions on Sustainable Energy, 2020, 11(3): 1438-1450. [22] 李滨, 覃芳璐, 吴茵, 等. 基于模糊信息粒化与多策略灵敏度的短期日负荷曲线预测[J]. 电工技术学报, 2017, 32(9): 149-159. Li Bin, Tan Fanglu, Wu Yin, et al.Short-term daily load curve forecasting based on fuzzy information granulation and multi-strategy sensitivity[J]. Transactions of China Electrotechnical Society, 2017, 32(9): 149-159. [23] 魏韡, 刘锋, 梅生伟. 电力系统鲁棒经济调度(二)应用实例[J]. 电力系统自动化, 2013, 37(18): 60-67. Wei Wei, Liu Feng, Mei Shengwei.Robust and economical scheduling methodology for power systems part two application examples[J]. Automation of Electric Power Systems, 2013, 37(18): 60-67. |
|
|
|