|
|
Research on Position Cooperative Control of High-Precision Embedded Permanent Magnet Synchronous Linear Motor Based on Biological Intelligence Loop Coupling |
Wang Can1, Li Guochong1, Yang Guilin2, Wang Chongchong2, Pan Jianfei1 |
1. College of Mechatronics and Control Engineering Shenzhen University Shenzhen 518060 China; 2. Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 China |
|
|
Abstract The multi-motor coordinated positioning drive system based on permanent magnet synchronous linear motors is widely used in various high-precision industrial processing and manufacturing fields due to its high thrust density ratio and fast response. This article aims at the integrated permanent magnet synchronous linear motor (IPMSLM) system, draws on the principle of hormone regulation in the biological field, and combines biological intelligent control (BIC) with sliding mode variable structure (SMVS). The control algorithm improves the positioning accuracy and robustness of a single motor in the IPMSLM system. Based on the Lyapunov stability principle, the loop-coupled position cooperative controller is designed to further improve the coordinated positioning accuracy of the entire IPMSLM system while ensuring global stability. Through no-load and variable-load experiments on the RT-Lab semi-physical simulation platform, experimental results show that the position control strategy proposed in this paper can not only achieve high-precision tracking control of a single motor (±4µm), but also achieve a high-precision coordinated control of multiple motors (±6µm).
|
Received: 30 August 2020
|
|
|
|
|
[1] Lu Huacai, Ti Juan, Sun Lulu, et al.A new sliding mode observer for the sensorless control of a PMLSM[J]. Applied Mechanics & Materials, 2014, 47(4): 1401-1404. [2] 叶云岳. 直线电机技术手册[M]. 北京: 机械工业出版社, 2003. [3] 付东学, 赵希梅. 永磁直线同步电机自适应反推全局快速终端滑模控制[J].电工技术学报, 2020, 35(8): 1634-1641. Fu Dongxue, Zhao Ximei.Permanent magnet linear synchronous motor adaptive backstepping global fast terminal sliding mode control[J]. Transactions of China Electrotechnical Society, 2020, 35(8): 1634-1641. [4] 王伟然, 吴嘉欣, 张懿, 等. 永磁同步电机模糊自整定自适应积分反步控制[J]. 电工技术学报, 2020, 35(4):724-733. Wang Weiran, Wu Jiaxin, Zhang Yi, et al.Permanent magnet synchronous motor fuzzy self-tuning adaptive integral backstepping control[J]. Transactions of China Electrotechnical Society, 2020, 35(4): 724-733. [5] 李垣江, 董鑫, 魏海峰, 等. 表贴式永磁同步电机转速环复合PI无位置传感器控制[J]. 电工技术学报, 2020, 35(10): 2119-2129. Li Yuanjiang, Dong Xin, Wei Haifeng, et al.Surface-mount permanent magnet synchronous motor speed loop compound PI sensorless control[J]. Transactions of China Electrotechnical Society, 2020, 35(10): 2119-2129. [6] 张立伟, 李行, 宋佩佩, 等. 基于新型滑模观测器的永磁同步电机无传感器矢量控制系统[J]. 电工技术学报, 2019, 34(增刊1): 70-78. Zhang Liwei, Li Xing, Song Peipei, et al.Sensorless vector control system of permanent magnet synchronous motor based on new sliding mode observer[J].Transactions of China Electrotechnical Society, 2019, 34(S1):70-78. [7] 侯利民, 申鹤松, 阎馨, 等. 永磁同步电机调速系统H∞鲁棒控制[J]. 电工技术学报, 2019, 34(7): 1478-1487. Hou Limin, Shen Hesong, Yan Xin, et al.H∞ robust control of permanent magnet synchronous motor speed control system[J]. Transactions of China Electrotechnical Society, 2019, 34(7): 1478-1487. [8] 申永鹏, 刘安康, 崔光照, 等. 扩展滑模观测器永磁同步电机无传感器矢量控制[J]. 电机与控制学报, 2020, 24(8): 51-57, 66. Shen Yongpeng, Liu Ankang, Cui Guangzhao, et al.Extended sliding mode observer sensorless vector control of permanent magnet synchronous motors[J]. Journal of Electrical Machines and Control, 2020, 24(8): 51-57, 66. [9] 许艳英, 包宋建. 改进粒子群算法优化的五连杆机器人分数阶PID控制器[J]. 中国工程机械学报, 2018, 16(5): 59-63. Xu Yanying, Bao Songjian.Improved particle swarm algorithm optimized five-link robot fractional order PID controller[J]. Chinese Journal of Construction Machinery, 2018, 16(5): 59-63. [10] 季鹏, 刘维亭, 张懿, 等. 基于RBF神经网络的船舶电站PID控制器研究[J]. 重庆理工大学学报(自然科学版), 2020, 34(2): 203-209. Ji Peng, Liu Weiting, Zhang Yi, et al.Research on PID controller of ship power station based on RBF neural network[J]. Journal of Chongqing University of Technology (Natural Science), 2020, 34(2): 203-209. [11] Ghafarikashani A R, Faiz J, Yazdanpanah M J.Integration of non-linear H∞ and sliding mode control techniques for motion control of a permanent magnet synchronous motor[J]. IET Electric Power Applications, 2010, 4(4): 267-280. [12] Masood C M A, John F, Mohammad F. Sliding mode based combined speed and direct thrust force control of linear permanent magnet synchronous motors with first order plus integral sliding condition[J]. IEEE Transactions on Power Electronics, 2018, 34(3): 2526-2538. [13] 杨俊友, 崔皆凡, 何国锋. 基于空间矢量调制和滑模变结构的永磁直线电机直接推力控制[J]. 电工技术学报, 2007, 22(6): 24-29. Yang Junyou, Cui Jiefan, He Guofeng.Direct thrust control of permanent magnet linear motor based on space vector modulation and sliding mode variable structure[J]. Transactions of China Electrotechnical Society, 2007, 22(6): 24-29. [14] Ni Jianjun, Wu Liuying, Fan Xinnan.Bioinspired intelligent algorithm and its applications for mobile robot control: a survey[J]. Computational Intelligence and Neuroscience, 2016(2): 1-16. [15] Elhanafi A, Fleming A, Macfarlane G.Numerical hydrodynamic analysis of an offshore stationary-floating oscillating water column-wave energy converter using CFD[J]. International Journal of Naval Architecture and Ocean Engineering, 2017, 9(1): 77-99. [16] Eubanks C F, Ishii K.AI methods for life-cycle serviceability design of mechanical systems[J]. Artificial Intelligence in Engineering, 1993, 8(2): 127-140. [17] 陈凌, 王少军, 范维, 等. 基于虚拟电子主轴的双电机同步控制研究[J]. 装备制造技术, 2016, 255(3), 15-17. Chen Ling, Wang Shaojun, Fan Wei, et al.Research on dual-motor synchronous control based on virtual electronic spindle[J]. Equipment Manufacturing Technology, 2016, 255(3): 15-17. [18] Li Chao, Chen Zheng, Yao Bin.Adaptive robust synchronization control of a dual-linear-motor-driven gantry with rotational dynamics and accurate online parameter estimation[J]. IEEE Transactions on Industrial Informatics, 2017, 14(7): 3013-3022. [19] Qiu Li, Shi Yang, Zhang Bo.Tracking control of networked multiple linear switched reluctance machines control system based on position compensation approach[J]. IEEE Transactions on Industrial Informatics, 2018, 14(12): 5368-5377. [20] Li Lebao, Sun Lingling, Zhang Shengzhou.Speed tracking and synchronization of multiple motors using ring coupling control and adaptive sliding mode control[J]. ISA Transactions, 2015, 58: 635-649. [21] Liu Ran, Sun Jianzhong, Luo Yaqin, et al.Research on multi-motor sliding-mode synchronization control based on ring coupling strategy[J]. China Mechanical Engineering, 2010, 21(22): 2662-2665. [22] Liu Ran, Sun Jianzhong, Luo Yaqin, et al.Research on multi-drive synchronization control based on ring coupling strategy[J]. Control and Decision, 2011, 26(6): 957-960. [23] Jiang Chaoqiang, Chau Kwok Tong, Liu Wei, et al.An LCC compensated multiple-frequency wireless motor system[J]. IEEE Transactions on Industrial Informatics, 2019, 15(11): 6023-6034. [24] 刘然, 孙建忠, 罗亚琴, 等. 基于环形耦合策略的多电机同步控制研究[J]. 控制与决策, 2011, 26(6): 957-960. Liu Ran, Sun Jianzhong, Luo Yaqin, et al.Research on multi-motor synchronous control based on ring coupling strategy[J]. Control and Decision, 2011, 26(6): 957-960. [25] 郁正纲, 付明, 王琛, 等. 基于生物控制算法的波浪发电系统控制策略[J]. 电工电气,2018(3):18-21. Yu Zhenggang, Fu Ming, Wang Chen, et al.Control strategy of wave power generation system based on biological control algorithm[J]. Electrician and Electrical, 2018 (3): 18-21. [26] 丁永生. 基于生物网络的智能控制与优化研究进展[J]. 控制工程,2010(4):416-421. Ding Yongsheng.Research progress of intelligent control and optimization based on biological network[J]. Control Engineering, 2010 (4): 416-421. [27] 张合新, 范金锁, 孟飞, 等. 一种新型滑模控制双幂次趋近律[J]. 控制与决策,2013,28(2): 132-136. Zhang Hexin, Fan Jinsuo, Meng Fei, et al.A new sliding mode control double power reaching law[J]. Control and Decision, 2013, 28(2): 132-136. [28] 马畅, 冷建伟. 永磁同步电机滑模调速系统新型趋近律控制[J]. 组合机床与自动化加工技术, 2019 542(4): 86-90. Ma Chang, Leng Jianwei.New approach law control of permanent magnet synchronous motor sliding mode speed regulation system[J]. Combined Machine Tool and Automatic Processing Technology, 2019, 542(4): 86-90. |
|
|
|