|
|
Day-Ahead Optimal Economic Dispatching Strategy for Micro Energy-Grid with P2G |
Liu Zhijian1, Liu Ruiguang1, Liang Ning1, Liu Xiaoxin2 |
1. Faculty of Electric Power Engineering Kunming University of Science and Technology Kunming 650500 China; 2. Yunnan Power Grid Corporation Limited Lushui 673199 China |
|
|
Abstract The micro energy-grid with multiple energy conversion equipment could improve the local accommodation rate of renewable energy resources by mutual conversion between different energy sources. In view of that, this paper proposed a day-ahead optimized scheduling strategy for micro energy grid that containing Power to Gas (P2G). Firstly, based on the research of micro energy-grid dispatching with P2G and gas-storage equipment, the influence mechanism it imposes on the grid economic operation and renewable energy accommodation was revealed. Then, the electrical coupling mechanism between micro turbine and P2G was studied, and a micro energy-grid model that combines electricity, gas, heat and cold power together was established by means of energy hub. Based on this model, the relationship between energy supply, conversion, and consumption was investigated through energy conversion matrix. Finally, by considering the benefits of P2G, a day-ahead optimal scheduling model with the goal of minimizing total operation cost was established and verified by establishing a comparison method. Simulation results demonstrate that proposed strategy plays a positive role in both system operating cost reduction and renewable energy accommodation enhancement.
|
Received: 20 November 2019
|
|
|
|
|
[1] 赵波, 汪湘晋, 张雪松, 等. 考虑需求侧响应及不确定性的微电网双层优化配置方法[J]. 电工技术学报, 2018, 33(14): 3284-3295. Zhao Bo, Wang Xiangjin, Zhang Xuesong, et al.Two-layer method of microgrid optimal sizing considering demand-side response and uncertainties[J]. Transactions of China Electrotechnical Society, 2018, 33(14): 3284-3295. [2] 葛维春, 滕健伊, 潘超, 等. 含风光储能源-储-荷规划与运行调控策略[J]. 电力系统保护与控制, 2019, 47(3): 46-53. Ge Weichun, Teng Jianyi, Pan Chao, et al.Operation regulation strategy of source-storage-load with wind energy storage energy[J]. Power System Protection and Control, 2019, 47(3): 46-53. [3] 李佳琪, 陈健, 张文, 等. 高渗透率光伏配电网中电池储能系统综合运行控制策略[J]. 电工技术学报, 2019, 34(2): 437-446. Li Jiaqi, Chen Jian, Zhang Wen, et al.Integrated control strategy for battery energy storage systems in distribution networks with high photovoltaic penetration[J]. Transactions of China Electrotechnical Society, 2019, 34(2): 437-446. [4] 肖朝霞, 贾双, 朱建国, 等. 风光储微电网并网联络线功率控制策略[J]. 电工技术学报, 2017, 32(15): 169-179. Xiao Zhaoxia, Jia Shuang, Zhu Jianguo, et al.Tie-line power flow control strategy for a grid-connected microgrid containing wind, photovoltaic and battery[J]. Transactions of China Electrotechnical Society, 2017, 32(15): 169-179. [5] Zhang Ning, Lu Xi, McElroy M B, et al. Reducing curtailment of wind electricity in China by employing electric boilers for heat and pumped hydro for energy storage[J]. Applied Energy, 2016, 184: 987-994. [6] Samaneh Pazouki, Mahmoud-Reza Haghifam, Albert Moser.Uncertainty modeling in optimal operation of energy hub in presence of wind, storage and demand response[J]. Electrical Power and Energy Systems, 2014, 61: 335-345. [7] 熊连松, 修连成, 王慧敏, 等. 储能系统抑制电网功率振荡的机理研究[J]. 电工技术学报, 2019, 34(20): 4373-4380. Xiong Liansong, Xiu Liancheng, Wang Huimin, et al.Mechanism of energy storage system to suppress grid power oscillations[J]. Transactions of China Electrotechnical Society, 2019, 34(20): 4373-4380. [8] 彭生江, 杨淑霞, 袁铁江, 等. 广义风-氢-煤能源系统的挑战与展望[J]. 电力系统自动化, 2019, 43(24): 6-12. Peng Shengjiang, Yang Shuxia, Yuan Tiejiang, et al.Challenges and prospects of generalized wind-hydrogen-coal energy system[J]. Automation of Electric Power System, 2019, 43(24): 6-12. [9] 沈海平, 陈铭, 钱磊, 等. 计及电转气耦合的电-气互联系统机组组合线性模型研究[J]. 电力系统保护与控制, 2019, 47(8): 34-41. Shen Haiping, Chen Ming, Qian Lei, et al.Linear model research of unit commitment for integrated electricity and natural-gas systems considering power-to-gas coupling[J]. Power System Protection and Control, 2019, 47(8): 34-41. [10] Herib Blanco, André Faaij.A review at the role of storage in energy systems with a focus on power to gas and long-term storage[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 1049-1086. [11] 严毅, 张承慧, 李珂, 等. 含压缩空气的微网复合储能系统主动控制策略[J]. 电工技术学报, 2017, 32(20): 231-240. Yan Yi, Zhang Chenghui, Li Ke, et al.An active control strategy for composited energy storage with compressed air energy storage in micro-grid[J]. Transactions of China Electrotechnical Society, 2017, 32(20): 231-240. [12] 孔令国, 蔡国伟, 李龙飞, 等. 风光氢综合能源系统在线能量调控策略与实验平台搭建[J]. 电工技术学报, 2018, 33(14): 3371-3384. Kong Lingguo, Cai Guowei, Li Longfei, et al.Online energy control strategy and experimental platform of integrated energy system of wind, photovoltaic and hydrogen[J]. Transactions of China Electrotechnical Society, 2018, 33(14): 3371-3384. [13] 邢学韬, 林今. 基于高温电解的大规模电力储能技术[J]. 全球能源互联网, 2018, 1(3): 303-312. Xing Xuetao, Lin Jin.Large scale energy storage technology based on high-temperature electrolysis[J]. Journal of Global Energy Interconnection, 2018, 1(3): 303-312. [14] 刘伟佳, 文福拴, 薛禹胜, 等. 电转气技术的成本特征与运营经济性分析[J]. 电力系统自动化, 2016, 40(24): 1-11. Liu Weijia, Wen Fushuan, Xue Yusheng, et al.Cost characteristics and economic analysis of power-to-gas technology[J]. Automation of Electric Power System, 2016, 40(24): 1-11. [15] 李杨, 刘伟佳, 赵俊华, 等. 含电转气的电-气-热系统协同调度与消纳风电效益分析[J]. 电网技术, 2016, 40(12): 3680-3688. Li Yang, Liu Weijia, Zhao Junhua, et al.Optimal dispatch of combined electricity-gas-heat energy systems with power-to-gas devices and benefit analysis of wind power accommodation[J]. Power System Technology, 2016, 40(12): 3680-3688. [16] 董帅, 王成福, 梁军, 等. 计及电转气运行成本的综合能源系统多目标日前优化调度[J]. 电力系统自动化, 2018, 42(11): 8-15. Dong Shuai, Wang Chengfu, Liang Jun, et al.Multi-objective optimal day-ahead dispatch of integrated energy system considering power-to-gas operation cost[J]. Automation of Electric Power System, 2018, 42(11): 8-15. [17] Mohammadi M, Noorollahi Y, Mohammadi-ivatloo B, et al. Optimal management of energy hubs and smart energy HUBS a review[J]. Renewable & Sustainable Energy Reviews, 2018, 89: 33-50. [18] Ma Rui, Deng Jianbo, Li Hao, et al.Improved particle swarm optimization algorithm to multi objective optimization energy hub model with P2G and energy storage[C]//2017 IEEE Conference on Energy Internet and Energy System Integration (EI2), Beijing, 2017: 1-6. [19] 余涛, 童家鹏. 微型燃气轮机发电系统的建模与仿真[J]. 电力系统保护与控制, 2009, 37(3): 27-45. Yu Tao, Tong Jiapeng.Modeling and simulation of the microturbine generation system[J]. Power System Protection and Control, 2009, 37(3): 27-45. [20] 李岩学, 阮应君, 刘青荣, 等. 基于烟气余热驱动喷射制冷的微型燃气轮机进气冷却系统[J]. 热力发电, 2015, 44(9): 9-13. Li Yanxue, Ruan Yingjun, Liu Qingrong, et al.Theoretical analysis of micro gas turbine inlet gas cooling system based on jet refrigeration driven by waste heat[J]. Thermal Power Generation, 2015, 44(9): 9-13. [21] 陈丽萍, 林晓明, 许苑, 等. 基于能源集线器的微能源网建模与多目标优化调度[J]. 电力系统保护与控制, 2019, 47(6): 9-16. Chen Liping, Lin Xiaoming, Xu Yuan, et al.Modeling and multi-objective optimal dispatch of micro energy grid based on energy hub[J]. Power System Protection and Control, 2019, 47(6): 9-16. [22] 杨艳红, 裴玮, 屈慧, 等. 基于广义Benders分解的分布式热电联供机组规划方法[J]. 电力系统自动化, 2014, 38(12): 27-33. Yang Yanhong, Pei Wei, Qu Hui, et al.A planning method of distributed combined heat and power generator based on generalized benders decomposition[J]. Automation of Electric Power System, 2014, 38(12): 27-33. [23] Canova A, Chicco G, Genon G, et al.Emission characterization and evaluation of natural gas-fueled cogeneration microturbines and internal combustion engines[J]. Energy Conversion & Management, 2008, 49(10): 2900-2909. [24] 魏业文, 李应智, 曹斌, 等. 含Buck电路的锂电池低功耗电量均衡技术研究[J]. 电工技术学报, 2018, 33(11): 2575-2583. Wei Yewen, Li Yingzhi, Cao Bin, et al.Research on power equalization of lithium-ion batteries with less-loss Buck chopper[J]. Transactions of China Electrotechnical Society, 2018, 33(11): 2575-2583. [25] 陈沼宇, 王丹, 贾宏杰, 等. 考虑P2G多源储能型微网日前最优经济调度策略研究[J]. 中国电机工程学报, 2017, 37(11): 3067-3077. Chen Zhaoyu, Wang Dan, Jia Hongjie, et al.Research on optimal day-ahead economic dispatching strategy for microgrid considering P2G and multi-source energy storage system[J]. Proceedings of the CSEE, 2017, 37(11): 3067-3077. |
|
|
|