|
|
Stability Analysis and Efficiency Optimization Design of Bilateral LCC Inductively Coupled Power Transmission System |
Cai Jin1, Wu Xusheng1, Hu Fengge2, Sun Pan1, Sun Jun1 |
1. College of Electrical Engineering Naval University of Engineering Wuhan 430033 China; 2. National Key Laboratory of Science and Technology on Vessel Integrated Power System Naval University of Engineering Wuhan 430033 China |
|
|
Abstract The soft switching characteristics of the bilateral LCC inductively coupled wireless power transmission system are susceptible to system parameter disturbances. In order to improve the stability of the zero-voltage soft switching of the system, the system equivalent input impedance angle model and efficiency model are derived. Then, the disturbance analysis of the system's multi-topological parameters is carried out, and the influence of load changes on the system's equivalent input impedance angle and efficiency is studied. The key parameter configuration method is proposed. Finally, a test prototype with a working frequency of 86kHz, an output power of 2kW and a transmission distance of 15cm was built to verify the correctness of the theory. Simulation and test results show that the method in this paper has good load adaptability..
|
Received: 18 November 2019
|
|
|
|
|
[1] 张波, 疏许健, 黄润鸿. 感应和谐振无线电能传输技术的发展[J]. 电工技术学报, 2017, 32(18): 3-17. Zhang Bo, Shu Xujian, Huang Runhong.The development of inductive and resonant wireless power transfer technology[J]. Transactions of China Electrotechnical Society, 2017, 32(18): 3-17. [2] Li Ying, Vikram Jandhyala.Design of retrodirective antenna arrays for short-range wireless power transmission[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(1): 206-211. [3] 程时杰, 陈小良, 王军华, 等. 无线输电关键技术及其应用[J]. 电工技术学报, 2015, 30(19): 68-84. Cheng Shijie, Chen Xiaoliang, Wang Junhua, et al.Key technologies and applications of wireless power transmission[J]. Ttransactions of China Electrote-chnical Society, 2015, 30(19): 68-84. [4] Li Weihan, Zhao Han, Deng Junhun, et al.Comparison study on SS and double-sided LCC compensation topologies for EV/PHEV wireless chargers[J]. IEEE Transactions on Vehicular Technology, 2016, 65(6): 4429-4439. [5] Li Qifan, Liang Y C.An inductive power transfer system with a high-Q resonant tank for mobile device charging[J]. IEEE Transactions on Power Electronics, 2015, 30(11): 6203-6212. [6] Zhang Wei, Wong S C, Tse C K, et al.Design for efficiency optimization and voltage controllability of series-series compensated inductive power transfer systems[J]. IEEE Transactions on Power Electronics, 2014, 29(1): 191-200. [7] 翟渊, 孙跃, 戴欣, 等. 磁共振模式无线电能传输系统建模与分析[J]. 中国电机工程学报, 2012, 32(12): 155-160. Zhai Yuan, Sun Yue, Dai Xin, et al.Modeling and analysis of magnetic resonance wireless power transmission system[J]. Proceedings of the CSEE, 2012, 32(12): 155-160. [8] 丰昊, 蔡涛, 段善旭, 等. LCL型感应式能量传输系统的时域特性分析[J]. 中国电机工程学报, 2016, 36(18): 4938-4945, 5118. Feng Hao, Cai Tao, Duan Shanxu, et al.Time-domain analysis of LCL compensated inductive power transfer systems[J]. Proceedings of the CSEE, 2016, 36(18): 4938-4945, 5118. [9] 周豪, 姚钢, 赵子玉, 等. 基于LCL谐振型感应耦合电能传输系统[J]. 中国电机工程学报, 2013, 33(33): 9-16, 2. Zhou Hao, Yao Gang, Zhao Ziyu, et al.LCL resonant inductively coupled power transfer systems[J]. Proceedings of the CSEE, 2013, 33(33): 9-16, 2. [10] Li Siqi, Mi Chunting.Wireless power transfer for electric vehicle applications[J]. IEEE Journal of Emerging & Selected Topics in Power Electronics, 2015, 3(1): 4-17. [11] Kan T, Nguyen T D, White J C, et al.A new integration method for an electric vehicle wireless charging system using LCC compensation topology: analysis and design[J]. IEEE Transactions on Power Electronics, 2017, 32(2): 1638-1650. [12] Li Siqi, Li Weihan, Deng Junjun, et al.A double-sided LCC compensation network and its tuning method for wireless power transfer[J]. IEEE Transactions on Vehicular Technology, 2015, 64(6): 2261-2273. [13] 陆江华, 朱国荣, 黎文静, 等. 感应耦合能量传输系统中双边LCC谐振腔恒流和恒压模式的研究[J].中国电机工程学报, 2019, 39(9): 2768-2778. Lu Jianghua, Zhu Guorong, Li Wenjing, et al.Constant current and constant voltage outputs for double-sided LCC resonant tank in inductively coupled power transfer system[J]. Proceedings of the CSEE, 2019, 39(9): 2768-2778. [14] 张成良. 基于双边LCC拓扑结构的抗偏移静态无线充电系统研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. [15] 李中启, 黄守道, 袁小芳. 线圈非同轴时磁耦合谐振式无线电能传输系统的效率优化[J]. 电工技术学报, 2017, 32(8): 151-159. Li Zhongqi, Huang Shoudao, Yuan Xiaofang.Optimum efficiency analysis of wireless power transfer system via coupled magnetic resonances with lateral and angular misalignments[J]. Transactions of China Electrotechnical Society, 2017, 32(8): 151-159. [16] Pinuela M, Yates D C, Lucyszyn S, et al.Maximizing DC-to-load efficiency for inductive power transfer[J]. IEEE Transactions on Power Electronics, 2013, 28(5): 2437-2447. [17] 王智慧, 吕潇, 孙跃, 等. 谐振式无线电能传输系统损耗模型[J]. 电工技术学报, 2014, 29(9): 17-21. Wang Zhihui, Lü Xiao, Sun Yue, et al.Modeling of power loss in resonant wireless power transfer system[J]. Transactions of China Electrotechnical Society, 2014, 29(9): 17-21. [18] 邓其军, 刘姜涛, 陈诚, 等. 应用于无线电能传输的Litz线平面矩形螺旋线圈高频电阻计算[J]. 电工技术学报, 2016, 31(11): 176-185. Deng Qijun, Liu Jiangtao, Chen Cheng, et al.High frequency resistance in Litz-wire planar rectangular solenoid coils for wireless power transfer[J]. Transactions of China Electrotechnical Society, 2016, 31(11): 176-185. |
|
|
|