|
|
Comparative Analysis of Two Typical Field Modulated Permanent-Magnet Machines |
Shi Yujun1, Cheng Zihuo1, Jian Linni2 |
1. Department of Electromechanical Engineering University of Macau Macau 999078 China; 2. Shenzhen Key Laboratory of Electric Direct Drive Technolog Department of Electrical and Electronic Engineering Southern University of Science and Technology Shenzhen 518055 China |
|
|
Abstract In this paper, the performance and characteristics of two typical field modulated permanent-magnet machines (FMPMs), i.e. regular permanent-magnet vernier machine (PMVM) and dual permanent-magnet-excited machine (DPMEM), were compared and analyzed. Firstly, the structures of the two machines were introduced and their structural characteristics were summarized. Next, by deducing the general expressions of the two machines, i.e. no-load back electromotive force (EMF) and output torque, their working principles were revealed, and the “unidirectional field modulation effect (UFME)” and “bi-directional field modulation effect (BFME)” were compared. Finally, by finite element method (FEM), the performance of two machines was compared and analyzed, and the correctness of the general expressions was verified. The results of FEM simulation show that under the same size, number of stator slots and stator teeth, pole-pair number (PPN) of windings and rotor permanent magnets (PMs), turns of each coil, winding connection, electric load, copper loss and rotational speed, the DPMEM is superior to the regular PMVM in terms of PM consumption, back EMF, torque density, torque per unit volume of magnet, power factor and efficiency.
|
Received: 30 August 2019
|
|
|
|
|
[1] 鲍晓华, 刘佶炜, 孙跃, 等. 低速大转矩永磁直驱电机研究综述与展望[J]. 电工技术学报, 2019, 34(6): 1148-1160.Bao Xiaohua, Liu Jiwei, Sun Yue, et al. Review and prospect of low-speed high-torque permanent magnet machines[J]. Transactions of China Electrotechnical Society, 2019, 34(6): 1148-1160. [2] Li Xianglin, Chau K T, Cheng Ming, et al.Performance analysis of a flux-concentrating field-modulated permanent-magnet machine for direct-drive applications[J]. IEEE Transactions on Magnetics, 2015, 51(5): 1-11. [3] Jian Linni, Chau K T, Jiang Jianzhong.A magnetic-geared outer-rotor permanent-magnet brushless machine for wind power generation[J]. IEEE Transactions on Industry Applications, 2009, 45(3): 954-962. [4] Toba A, Lipo T A.Generic torque-maximizing design methodology of surface permanent-magnet vernier machine[J]. IEEE Transactions on Industry Applications, 2000, 36(6): 1539-1546. [5] Li Dawei, Qu Ronghai, Li Jian, et al.Analysis of torque capability and quality in vernier permanent magnet machines[J]. IEEE Transactions on Industry Applications, 2016, 52(1): 125-135. [6] Jian Linni, Shi Yujun, Liu Cheng, et al.A novel dual-permanent-magnet-excited machine for low-speed large-torque applications[J]. IEEE Transactions on Magnetics, 2013, 49(5): 2381-2384. [7] Zhao Wenxiang, Sun Xiaojin, Ji Jinghua, et al.Design and analysis of new vernier permanent-magnet machine with improved torque capability[J]. IEEE Transactions on Applied Superconductivity, 2016, 26(4): 1-5. [8] Jiang Shan, Liu Guohai, Zhao Wenxiang, et al.Modeling and analysis of spoke-type permanent magnet vernier machine based on equivalent magnetic network method[J]. Chinese Journal of Electrical Engineering, 2018, 4(2): 96-103. [9] 张进, 张秋菊. 同极内嵌式永磁游标电机电磁性能分析[J]. 电机与控制学报, 2020, 24(4): 158-164. Zhang Jin, Zhang Qiuju. Electromagnetic performances analysis of a consequent-pole interior permanent magnet vernier machine[J]. Electric Machines and Control, 2020, 24(4): 158-164. [10] Kim B, Lipo T A.Operation and design principles of a PM vernier motor[J]. IEEE Transactions on Industry Applications, 2014, 50(6): 3656-3663. [11] Liu Guohai, Jiang Shan, Zhao Wenxiang, et al.Modular reluctance network simulation of a linear permanent magnet vernier machine using new mesh generation methods[J]. IEEE Transactions on Industrial Electronics, 2017, 64(7): 5323-5332. [12] 杨玉波, 刘国鹏, 陈鹏, 等. 基于子域法的游标混合电机电磁性能解析计算[J]. 电机与控制学报, 2019, 23(9): 9-17, 25. Yang Yubo, Liu Guopeng, Chen Peng, et al. Electromagnetic performance investigation of vernier hybrid machine[J]. Electric Machines and Control, 2019, 23(9): 9-17, 25. [13] Liu Guohai, Jiang Shan, Zhao Wenxiang, et al.A new modeling approach for permanent magnet vernier machine with modulation effect consideration[J]. IEEE Transactions on Magnetics, 2017, 53(1): 1-12. [14] Xu Liang, Liu Guohai, Zhao Wenxiang, et al.Hybrid stator design of fault-tolerant permanent-magnet vernier machines for direct drive applications[J]. IEEE Transactions on Industrial Electronics, 2017, 64(1): 179-190. [15] 梁子漪, 曲荣海, 李大伟, 等. 一种交替极切向励磁游标永磁电机的分析与设计[J]. 电工技术学报, 2020, 35(15): 3173-3181.Liang Ziyi, Qu Ronghai, Li Dawei, et al. Analysis of a consequent-pole spoke-array vernier permanent magnet machine[J]. Transactions of China Electrotechnical Society, 2020, 35(15): 3173-3181. [16] 李岱岩, 白保东, 杨晨, 等. 基于调磁块阵列的永磁游标电机研究[J]. 电工技术学报, 2018, 33(增刊2): 359-366.Li Daiyan, Bai Baodong, Yang Chen, et al. Study of permanent magnet vernier machine by using magnetic tuning block array[J]. Transactions of China Electrotechnical Society, 2018, 33(S2): 359-366. [17] Shi Chaojie, Qu Ronghai, Gao Yuting, et al.Design and analysis of an interior permanent magnet linear vernier machine[J]. IEEE Transactions on Magnetics, 2018, 54(11): 1-5. [18] Li Dawei, Qu Ronghai, Li Jian, et al.Consequent-pole toroidal-winding outer-rotor vernier permanent-magnet machines[J]. IEEE Transactions on Industry Applications, 2015, 51(6): 4470-4481. [19] Shi Yujun, Jian Linni.A novel dual-permanent-magnet-excited machine with flux strengthening effect for low-speed large-torque applications[J]. Energies, 2018, 11(1): 1-17. [20] Liang Ziyi, Gao Yuting, Li Dawei, et al.Design of a novel dual flux modulation machine with consequent-pole spoke-array permanent magnets in both stator and rotor[J]. CES Transactions on Electrical Machines and Systems, 2018, 2(1): 73-81. [21] Wang Qingsong, Niu Shuangxia.A novel hybrid-excited dual-PM machine with bidirectional flux modulation[J]. IEEE Transactions on Energy Conversion, 2017, 32(2): 424-435. [22] Xie Kangfu, Li Dawei, Qu Ronghai, et al.A novel permanent magnet vernier machine with Halbach array magnets in stator slot opening[J]. IEEE Transactions on Magnetics, 2017, 53(6): 1-5. [23] Xu Liang, Zhao Wenxiang, Liu Guohai, et al.Design optimization of a spoke-type permanent-magnet vernier machine for torque density and power factor improvement[J]. IEEE Transactions on Vehicular Technology, 2019, 68(4): 3446-3456. [24] Siddiqi M R, Kffaliq S, Kwon J W, et al.Optimal design of dual stator spoke type vernier machine considering armature winding placement[J]. International Journal of Applied Electromagnetics and Mechanics, 2019, 59(3): 921-930. [25] Jian Linni, Shi Yujun, Wei Jin, et al.Design optimization and analysis of a dual-permanent-magnet-excited machine using response surface methodology[J]. Energies, 2015, 8(9): 10127-10140. [26] 陈晓, 赵文祥, 吉敬华, 等. 考虑边端效应的双边直线永磁游标电机模型预测电流控制[J]. 电工技术学报, 2019, 34(1): 53-61.Chen Xiao, Zhao Wenxiang, Ji Jinghua, et al. Model predictive current control of double-side linear vernier permanent magnet machines considering end effect[J]. Transactions of China Electrotechnical Society, 2019, 34(1): 53-61. [27] 陈浩, 和阳, 赵文祥, 等. 基于占空比调制的五相容错永磁游标电机直接转矩控制[J]. 电工技术学报, 2020, 35(5): 1055-1064.Chen Hao, He Yang, Zhao Wenxiang, et al. Direct torque control of five-phase fault-tolerant permanent magnet vernier motor based on duty cycle modulation [J]. Transactions of China Electrotechnical Society, 2020, 35(5): 1055-1064. [28] Zhao Wenxiang, Gu Chenyu, Chen Qian, et al.Remedial phase-angle control of a five-phase fault-tolerant permanent-magnet vernier machine with short-circuit fault[J]. CES Transactions on Electrical Machines and Systems, 2017, 1(1): 83-88. [29] 刘国海, 杨欣宇, 徐亮, 等. 五相永磁容错型游标电机弱磁特性研究[J]. 电工技术学报, 2017, 32(19): 52-61.Liu Guohai, Yang Xinyu, Xu Liang, et al. Research on flux-weakening performances for five-phase fault-tolerant permanent-magnet vernier motors[J]. Transactions of China Electrotechnical Society, 2017, 32(19): 52-61. [30] 陈仲华, 赵文祥, 张建, 等. 高推力永磁游标直线电机的开放式绕组SVPWM控制[J]. 电工技术学报, 2016, 30(增刊2): 216-224.Chen Zhonghua, Zhao Wenxiang, Zhang Jian, et al. SVPWM control for dual two-level inverter fed open-end winding high thrust permanent magnet vernier linear motor[J]. Transactions of China Electrotechnical Society, 2016, 29(S2): 216-224. [31] 矫帅, 赵文祥, 邱先群, 等. 基于改进式反电动势法的直线游标永磁电机无位置传感器控制[J]. 电工技术学报, 2016, 31(增刊2): 242-248.Jiao Shuai, Zhao Wenxiang, Qiu Xianqun, et al. Sensorless control of linear permanent magnet vernier motor based on improved stator back EMF[J]. Transactions of China Electrotechnical Society, 2016, 31(S2): 242-248. [32] Niu Shuangxia, Ho S L, Fu W N.A novel stator and rotor dual PM vernier motor with space vector pulse width modulation[J]. IEEE Transactions on Magnetics, 2014, 50(2): 805-808. [33] Wu Leilei, Qu Ronghai, Li Dawei, et al.Influence of pole ratio and winding pole numbers on performances and optimal Design parameters of surface permanent magnet vernier machines[J]. IEEE Transactions on Industry Applications, 2015, 51(5): 3707-3715. [34] Shi Yujun, Wei Jin, Deng Zhengxing, et al.Design and analysis of a dual-permanent-magnet-excited machine for low-speed large-torque applications[J]. Journal of Electronic Materials, 2019, 48(3): 1400-1411. [35] Yu Yanlei, Chai Feng, Pei Yulong, et al.Comparisons of torque performance in surface-mounted PM vernier machines with different stator tooth topologies[J]. IEEE Transactions on Industry Applications, 2019, 55(4): 3671-3684. [36] Zou Tianjie, Li Dawei, Ru Ronghai, et al.Performance comparison of surface and spoke-type flux-modulation machines with different pole ratios[J]. IEEE Transactions on Magnetics, 2017, 53(6): 1-5. [37] Xu Liang, Liu Guohai, Zhao Wenxiang, et al.Quantitative comparison of integral and fractional slot permanent magnet vernier motors[J]. IEEE Transactions on Energy Conversion, 2015, 30(4): 1483-1495. [38] Shi Yujun, Niu Shuangxia, Wei Jin, et al.Comparison between dual-permanent-magnet-excited machines with fewer stator poles and fewer rotor poles[J]. IEEE Transactions on Magnetics, 2015, 51(3): 1-4. |
|
|
|