|
|
Analysis of Charge-Carrier Transport Characteristics of Transformer Oil-Based Nanofluids |
Dong Ming, Yang Kaige, Ma Xinyi, Hu Yizhuo, Xie Jiacheng, Xu Guanghao |
College of Electrical Engineering Xi'an Jiaotong University Xi'an 710049 China |
|
|
Abstract Adding nanoparticles to traditional transformer oil can improve the heat exchange properties and enhance the dielectric withstand characteristics. The research on the charge-carrier transport characteristics of these transformer oil-based nanofluids (TNFs) can explain their improved insulating characteristics and clarify the mechanisms dictating these modifications. In this paper, the conduction current and velocity field of TNFs under high electric field excitation were measured for the first time, and the charge-carrier transport characteristics were analyzed. According to the magnitude of the applied electric field, the transport process can be divided into three stages: Ohmic, tunneling, and space charge limited current (SCLC) stages. In the Ohmic stage, the electric field strength is very low, and the addition of nanoparticles increases the conduction current and the number of carriers. In the tunneling stage (medium-to-high electric field strengths), the predominant charge carriers in the TNFs change from ions and colloidal particles to electrons emitted from the electrode. The thickness of the Schottky barrier at the metal-liquid interface increases on the addition of nanoparticles, which reduces the number of electrons that pass through to the interface region. The field strength required for electron transmission is enhanced, and the insulation strength is improved. In the SCLC stage (very high electric fields), the carrier mobility is reduced because the trap density of TNFs is larger and the electrical discharge is suppressed.
|
Received: 09 August 2019
|
|
|
|
|
[1] 杜伯学, 朱闻博, 李进, 等. 换流变压器阀侧套管油纸绝缘研究现状[J]. 电工技术学报, 2019, 34(6): 1300-1309. Du Boxue, Zhu Wenbo, Li Jin, et al.Research status of oil-paper insulation for valve side bushing of converter transformer[J]. Transactions of China Elec- trotechnical Society, 2019, 34(6): 1300-1309. [2] 高嵩, 刘洋, 路永玲, 等. 交流特高压输电线路运行维护现状综述[J]. 电力工程技术, 2014, 33(2): 81-84. Gao Song, Liu Yang, Lu Yongling, et al.A review on operation and maintenance of UHV AC transmission line[J]. Electric Power Engineering Technology, 2014, 33(2): 81-84. [3] 张明泽, 刘骥, 齐朋帅, 等. 基于介电响应技术的变压器油纸绝缘含水率数值评估方法[J]. 电工技术学报, 2018, 33(18): 4397-4407. Zhang Mingze, Liu Ji, Qi Pengshuai, et al.Numerical evaluation method for moisture content of trans- former oil-paper insulation based on dielectric response technique[J]. Transactions of China Electrotechnical Society, 2018, 33(18): 4397-4407. [4] 杨国清, 黎洋, 王德意, 等. 超支化聚酯改性纳米SiO2/环氧树脂的介电特性[J]. 电工技术学报, 2019, 34(5):1106-1115. Yang Guoqing, Li Yang, Wang Deyi, et al.Effect of hyperbranched polyester grafting nanosilica on dielectric properties of epoxy resin[J]. Transactions of China Electrotechnical Society, 2019, 34(5): 1106-1115. [5] Choi U S.Enhancing thermal conductivity of fluids with nano-particles[J]. Office of Scientific and Tech- nical Information Technical Reports, 1995, 231(1): 99-105. [6] Segal V, Hjortsberg A, Rabinovich A, et al.AC (60Hz) and impulse breakdown strength of a colloidal fluid based on transformer oil and magnetite nano- particles[C]//IEEE International Symposium on Elec- trical Insulation, Arlington, VA, USA, 1998: 619-622. [7] 王有元, 李熙, 李原龙, 等. 交直流复合电压下铜颗粒在油中的分布及对绝缘油击穿特性的影响[J]. 电工技术学报, 2018, 33(23): 5581-5590. Wang Youyuan, Li Xi, Li Yuanlong, et al.Distri- bution of copper particles in oil and influence on breakdown characteristics of insulating oil under AC and DC composite voltage[J]. Transactions of China Electrotechnical Society, 2018, 33(23): 5581-5590. [8] 郝建, 但敏, 廖瑞金, 等. 颗粒属性对矿物绝缘油直流击穿特性的影响差异及原因分析[J]. 电工技术学报, 2019, 34(24): 5270-5281. Hao Jian, Dan Min, Liao Ruijin, et al.Influence of particle properties on DC breakdown characteristics of mineral oil and its difference reason analysis[J]. Transactions of China Electrotechnical Society, 2019, 34(24): 5270-5281. [9] 周利军, 李会泽, 王安, 等. 纤维素老化对矿物油浸绝缘纸中水分扩散的影响[J]. 电工技术学报, 2019, 34(7): 1536-1543. Zhou Lijun, Li Huize, Wang An, et al.Effects of cellulose ageing on moisture diffusion in paper immersed with mineral oil[J]. Transactions of China Electrotechnical Society, 2019, 34(7): 1536-1543. [10] Schmidt W F. Elementary processes in the deve- lopment of the electrical breakdown of liquids[J]. IEEE Transactions on Electrical Insulation, 1982, EI-17(6): 478-483. [11] Butcher M, Neuber A A, Cevallos M D.Conduction and breakdown mechanisms in transformer oil[J]. IEEE Transactions on Plasma Science, 2016, 34(2): 467-475. [12] Zhou Yuanxiang, Hao Miao, Chen G, et al.Study of the charge dynamics in mineral oil under a non- homogeneous field[J]. IEEE Transactions on Die- lectrics & Electrical Insulation, 2015, 22(5): 2473-2482. [13] Negri F.Analysis of conduction current in nano- fluids[C]//IEEE Electrical Insulation & Dielectric Phenomena, Ann Arbor, MI, USA, 2015: 27-30. [14] 杜岳凡, 吕玉珍, 李成榕, 等. 半导体纳米粒子改性变压器油的绝缘性能及机制研究[J]. 中国电机工程学报, 2012, 32(10): 177-182. Du Yuefan, Lü Yuzhen, Li Chengrong, et al.Insulating property and mechanism of semicon- ducting nanoparticles modified transformer oils[J]. Proceedings of the CSEE, 2012, 32(10): 177-182. [15] Lü Yuzhen, Du Yuefan, Li Chengrong, et al.TiO2 nanoparticle induced space charge decay in thermal aged transformer oil[J]. Applied Physics Letters, 2013, 102(13): 132902. [16] 施健, 司马文霞, 杨庆, 等. 纳米粒子对变压器油中流注发展过程影响的仿真分析[J]. 高电压技术, 2015, 41(2): 424-431. Shi Jian, Sima Wenxia, Yang Qing, et al.Simulation analysis of the effect of nanoparticles on streamer development in transformer oil[J]. High Voltage Technology, 2015, 41(2): 424-431. [17] 葛扬. 冲击电压下纳米改性变压器油中电荷输运机理的研究[D]. 北京: 华北电力大学, 2019. [18] 温福新, 董明, 任明, 等. 基于修正的Havriliak- Negami模型的SiO2纳米改性变压器油宽频介电弛豫特性[J]. 电工技术学报, 2016, 31(7): 166-172. Wen Fuxin, Dong Ming, Ren Ming, et al.The broadband dielectric relaxation properties of the transformer oil based on SiO2 nanoparticles using modified Havriliak-Negami model[J]. Transactions of China Electrotechnical Society, 2016, 31(7): 166-172. [19] 王东阳, 周利军, 陈雪骄, 等. 变压器油纸绝缘系统低频介电参数方程[J]. 电工技术学报, 2017, 32(17): 218-224. Wang Dongyang, Zhou Lijun, Chen Xuejiao, et al.Complex relative permittivity expressions of oil- paper insulation for low frequency domain dielectric response[J]. Transactions of China Electrotechnical Society, 2017, 32(17): 218-224. [20] 李伯男, 李熙, 黄磊峰, 等. 金属颗粒对绝缘油流注发展特性的影响研究[J]. 电力工程技术, 2019, 38(2): 129-134. Li Bonan, Li Xi, Huang Leifeng, et al.Influence of metal particles on the development characteristics of insulating oil[J]. Electric Power Engineering Tech- nology, 2019, 38(2): 129-134 . [21] GB/T7595-2017. 运行中变压器油质量[S]. [22] 张立德. 纳米材料和纳米结构[J]. 中国科学院院刊, 2001, 16(6): 444-445. Zhang Lide.Nano-materials and nano-structures[J]. Bulletin of Chinese Academy of Sciences, 2001, 16(6): 444-445. [23] Forbes R, Deane J, Fischer A, et al. Fowler-nordheim plot analysis: a progress report[J]. Physics, 2015, 31(2): 02B103-02B103-8. [24] Butcher M D.Mechanisms of charge conduction and breakdown in liquid dielectrics[D]. Lubbock: Texas Tech University, 2005. [25] 殷之文. 电介质物理学[M]. 2版. 北京: 科学出版社, 2003. [26] 戴建卓, 董明, 王丽, 等. 直流电压下纳米改性变压器油流场测试与分析[J]. 中国电机工程学报, 2016, 36(15): 4274-4280. Dai Jianzhuo, Dong Ming, Wang Li, et al.Mea- surements and analysis of flow field of transformer oil-based nanofluids under DC voltage[J]. Pro- ceedings of the CSEE, 2016, 36(15): 4274-4280. [27] Zhu Y B, Ang L K.Nonuniform 2D mott-gurney law[C]//IEEE International Conference on Plasma Science, 2013, DOI: 10.1109/PLASMA.2013.6634947. [28] 杜岳凡. TiO2纳米粒子对变压器油绝缘和电荷输运特性的影响[D]. 北京: 华北电力大学, 2013. |
|
|
|