|
|
Compression Acquisition Method for Power Quality Data of Distribution Network Based on Distributed Compressed Sensing and Edge Computing |
Wang He1, Li Shiqiang1, Yu Huanan1, Zhang Jian2 |
1. Key Laboratory of Modern Power System Simulation and Control & Renewable Energy Technology Ministry of Education Northeast Electric Power University Jilin 132012 China; 2. Dispatching control center of State Grid Jilin Electric Power Co. Ltd Changchun 130000 China |
|
|
Abstract In view of the increasingly large power quality data in the distribution network and the difficulty in dividing harmonic pollution, this paper proposes a power quality data compression storage method based on distributed compressed sensing and edge computing. Its innovation lies in the proposed adaptive joint reconstruction algorithm based on the synchronous orthogonal matching pursuit algorithm and the K-SVD dictionary learning algorithm, which is applied to the cloud-side collaboration framework with distributed compressed sensing as the edge algorithm. Therefore, the dictionary atoms and measured values uploaded on the edge are analyzed to achieve compressed storage of power quality data. In addition, dynamic of harmonic pollution of the distribution network can be realized based on the cross-correlation between the sparse coefficients of each node. The simulation results show that the algorithm can not only compress realize the compression of the power quality data with high accuracy, save data storage space, but also has reference significance for the harmonic pollution partition of the distribution network.
|
Received: 27 April 2020
|
|
|
|
|
[1] 周国亮, 宋亚奇, 王桂兰, 等. 状态监测大数据存储及聚类划分研究[J]. 电工技术学报, 2013, 28(增刊2): 337-344. Zhou Guoliang, Song Yaqi, Wang Guilan, et al.Research of condition monitoring big data storage and clustering[J]. Transactions of China Electrotechnical Society, 2013, 28(S2): 337-344. [2] Zhao Wenjing, Shang Liqun, Sun Jinfan.Power quality disturbance classification based on time-frequency domain multi-feature and decision tree[J]. Protection and Control of Modern Power Systems, 2019, 4(4): 337-34. [3] 林楚乔, 佟辉, 于温方, 等. 基于泛在电力物联网的配电网智能化状态监测与故障处理平台设计[J]. 东北电力大学学报, 2019, 39(4): 1-4. Lin Chuqiao, Tong Hui, Yu Wenfang, et al.Design of intelligent state monitoring and fault handling platform for distribution network based on ubiquitous power internet of things[J]. Journal of Northeast Electric Power University, 2019, 39(4): 1-4. [4] 刘颖英, 冯丹丹, 林才华, 等. 电能质量综合评估研究现状及发展趋势[J]. 电力系统保护与控制, 2020, 48(4): 167-176. Liu Yingying, Feng Dandan, Lin Caihua, et al.Current status and development trend of power quality comprehensive assessment[J]. Power System Protection and Control, 2020, 48(4): 167-176. [5] 陈雷, 郑德忠, 廖文喆. 基于压缩感知的含扰动电能质量信号压缩重构方法[J]. 电工技术学报, 2016, 31(8): 163-171. Chen Lei, Zheng Dezhong, Liao Wenzhe.Method based on compressed sensing for compression and reconstruction of power quality signals with disturbances[J]. Transactions of China Electrotechnical Society, 2016, 31(8): 163-171. [6] 于华楠, 杜瑶, 马聪聪. 电力系统信号与数据的压缩传感技术综述[J]. 仪器仪表学报, 2017, 38(8): 1943-1953. Yu Huanan, Du Yao, Ma Congcong.Survey of compressed sensing technology for signal and data of power system[J]. Chinese Journal of Scientific Instrument, 2017, 38(8): 1943-1953. [7] 李剑飞, 陈隆道. 应用于电力谐波分析的改进插值算法[J]. 电力系统自动化, 2019, 43(8): 138-146. Li Jianfei, Chen Longdao.Improved interpolation algorithm applied to power harmonic analysis[J]. Automation of Electric Power Systems, 2019, 43(8): 138-146. [8] 黄南天, 彭华, 徐殿国, 等. 主动配电网电能质量信号高效压缩[J]. 电工技术学报, 2015, 30(增刊2): 181-188. Huang Nantian, Peng Hua, Xu Dianguo, et al.High efficiency power quality data compression in active distribution network[J]. Transactions of China Electrotechnical Society, 2015, 30(S2): 181-188. [9] 陈杨. 基于多小波的数据压缩研究及其在电力远程通信中的应用[D]. 沈阳: 东北大学, 2015. [10] 魏雪琴. 电能质量数据压缩的研究[D]. 合肥: 安徽大学, 2013. [11] 陈思伟, 高翠云, 胡翀. 基于相似度分段及重采样的自适应波形数据压缩[J]. 电子测量与仪器学报, 2019, 33(4): 178-185. Chen Siwei, Gao Cuiyun, Hu Chong.Adaptive waveform data compression based on similarity segmentation and resampling[J]. Journal of Electronic Measurement and Instrumentation, 2019, 33(4): 178-185. [12] 刘嫣, 汤伟, 刘宝泉. 基于压缩感知的电能质量扰动数据稀疏分析与改进重构算法[J]. 电工技术学报, 2018, 33(15): 3461-3470. Liu, Yan, Tang Wei, Liu Baoquan. Data sparse analysis and improved reconstruction algorithm of power quality disturbance based on compressed sensing[J]. Transactions of China Electrotechnical Society, 2018, 33(15): 3461-3470. [13] 于华楠, 代芳琳, 苏天恺. 基于压缩感知的三相电能质量扰动信号压缩及分类新方法[J], 吉林大学学报:工学版, 2016, 46(3): 964-971. Yu Huanan, Dai Fanglin, Su Tiankai.New compression and classification method of three phase power quality disturbance signal based on compressed sensing[J]. Journal of Jilin University: Engineering and Technology Edition, 2016, 46(3): 964-971. [14] 杨羊. 基于分布式压缩感知的气象传感网数据收集技术研究[D]. 南京: 南京信息工程大学, 2017. [15] Wang Rui, Qin Jiani, Du Linfeng, et al.A new image fusion method based on compressed sensing[C]//IET International Conference on Smart and Sustainable City, Shanghai, China, 2013, DOI: 10.1049/cp.2013. 2025. [16] 于华楠, 李永鑫, 王鹤. 基于过完备字典设计的电力系统扰动定位方法[J]. 电工技术学报, 2020, 35(7): 1444-1453. Yu Huanan, Li Yongxin, Wang He.Disturbance location method of power system based on over-complete reconstruction dictionary design[J]. Transactions of China Electrotechnical Society, 2020, 35(7): 1444-1453. [17] 张真真. 基于稀疏表示与字典学习的图像去噪算法研究[D]. 开封: 河南大学, 2018. [18] 杨柳, 彭江, 王同勋, 等. 中国电网电能质量数据概率分析模型及特性评[J]. 全球能源互联网(英文), 2018, 1(3): 391-395. Yang Liu, Peng Jiang, Wang Tongxun, et al.Compliance verification and probabilistic analysis of state-wide power quality monitoring data[J]. Global Energy Interconnection, 2018, 1(3): 391-395. [19] 秦奇波, 杨峰. 调制宽带转换器中一种改进的SOMP算法[J]. 电子信息对抗技术, 2015, 30(6): 10-14. Qin Qibo, Yang Feng.An improved SOMP algorithm for modulated wideband converter[J]. Electronic Information Warfare Technology, 2015, 30(6): 10-14. [20] Ren Jinke, Yu Guanding, He Yinghui, et al.Collaborative cloud and edge computing for Latency minimization[J]. IEEE Transactions on Vehicular Technology, 2019, 68(5): 5031-5044. [21] Wang Rui, Li Miao, Peng Limei, et al.Cognitive multi-agent empowering mobile edge computing for resource caching and collaboration[J]. Future Generation Computer Systems, 2020, 102: 66-74. [22] Yuan Peiyan, Cai Yunyun, Huang Xiaoyan, et al.Collaboration improves the capacity of mobile edge computing[J]. IEEE Internet of Things Journal, 2019, 6(6): 10610-10619. [23] He Qiang, Cui Guangming, Chen Feifei, et al.A game-theoretical approach for user allocation in edge computing environment[J]. IEEE Transactions on Parallel and Distributed Systems, 2020, 31(3): 515-529. [24] Woo-Joong Kim, Kyung-No Joo, Chan-Hyun Youn.Short-term time-varying request model based chunk caching scheme for live streaming in mobile edge-cloud environment[J]. IEEE Access, 2019, 7: 177148-177163. [25] 邵振国, 黄伟达. 考虑出力不确定性的分布式电源谐波传播计算[J]. 电工技术学报, 2019, 34(增刊2): 674-683. Shao Zhenguo, Huang Weida.A calculation method of harmonic propagation considering the uncertainty of distributed generation[J]. Transactions of China Electrotechnical Society, 2019, 34(S2): 674-683. [26] 赵仁德, 李乾, 徐海亮, 等. 脉冲宽度调制并网变换器电网背景谐波电流的抑制[J]. 电工技术学报, 2018, 33(增刊2): 558-566. Zhao Rende, Li Qian, Xu Hailiang, et al.Grid background harmonic current suppression for grid-connected PWM converters[J]. Transactions of China Electrotechnical Society, 2018, 33(S2): 558-566. [27] 张俊敏, 刘开培, 汪立, 等. 基于主瓣宽度多谱线插值的高精度快速谐波分析算法[J]. 电工技术学报, 2018, 33(增刊1): 121-128. Zhang Junmin, Liu Kaipei, Wang Li, et al.A precise and rapid algorithm for harmonic analysis based on multi-spectrum-line in main lobe width interpolation FFT[J]. Transactions of China Electrotechnical Society, 2018, 33(S1): 121-128. [28] 张逸, 王攸然, 刘航, 等. 基于监测数据相关性分析的用户谐波责任划分方法[J]. 电力系统自动化, 2020, 44(2): 189-199. Zhang Yi, Wang Youran, Liu Hang, et al.Determination method of user harmonic responsibility based on correlation a nalysis of monitoring data[J]. Automation of Electric Power Systems, 2020, 44(2): 189-199. [29] 石磊磊, 贾清泉, 孙海东, 等. 基于数据驱动的电能质量分区治理策略[J]. 中国电机工程学报, 2019, 39(4): 992-1001. Shi Leilei, Jia Qingquan, Sun Haidong, et al.Regional abatement strategy for power quality based on data driven[J]. Proceedings of the CSEE, 2019, 39(4): 992-1001. [30] 于浩, 贾清泉, 李珍国, 等. 基于时间序列模式匹配的电能质量区域化治理[J]. 中国电机工程学报, 2019, 39(13): 3788-3799. Yu Hao, Jia Qingquan, Li Zhenguo, et al.Regionalization control for power quality based on time series pattern matching[J]. Proceedings of the CSEE, 2019, 39(13): 3788-3799. [31] 战非. 基于压缩感知OMP算法对稀疏信号重构的研究[J]. 电子设计工程, 2017, 25(1): 71-74. Zhan Fei.A research on sparse signal reconstruction based on compressed sensing OMP algorithm[J]. Electronic Design Engineering, 2017, 25(1): 71-74. [32] 刘国海, 丁灵卫, 沈跃, 等. 广义正交匹配追踪电能质量信号重构方法[J]. 电测与仪表, 2019, 56(10): 69-74. Liu Guohai, Ding Lingwei, Shen Yue, et al.Power quality signal reconstruction method based on generalized orthogonal matching pursuit[J]. Electrical Measurement & Instrumentation, 2019, 56(10): 69-74. [33] 廖勇, 周昕, 沈轩帆, 等. 一种基于改进ROMP的MIMO-OFDM信道估计方法[J]. 电子学报, 2017, 45(12): 2848-2854. Liao Yong, Zhou Xin, Shen Xuanfan, et al.A channel estimation method based on improved regularized orthogonal matching pursuit for MIMO-OFDM systems[J]. Acta Electronica Sinica, 2017, 45(12): 2848-2854. [34] Donoho D, Tsaig Y, Drori I, et al.Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2012, 58(2): 1094-1121. [35] 余林, 肖儿良, 简献忠. SA-CoSaMP算法在电能质量扰动信号识别中的应用[J]. 电子测量技术, 2018, 41(21): 1-7. Yu Lin, Xiao Erliang, Jian Xianzhong.Application of SA-CoSaMP algorithm in power quality disturbance signal identification[J]. Electronic Measurement Technology, 2018, 41(21): 1-7. [36] 肖嘉耀. 基于db4小波变换的电能质量数据压缩算法[J]. 福建电脑, 2013, 29(6): 117-119. Xiao Jiayao.Power quality data compression algorithm based on db4 wavelet transform[J]. Fujian Computer, 2013, 29(6): 117-119. [37] 葛哲学, 沙威. 小波分析理论与MATLAB R2007实现[M]. 北京: 电子工业出版社, 2007. [38] 张乐平, 丁泽俊, 夏锐, 等. 结合二代小波与快速傅里叶变换的电能质量数据压缩算法[J]. 南方电网技术, 2013, 7(3): 89-93. Zhang Leping, Ding Zejun, Xia Rui, et al.A power quality data compression algorithm in combination of second generation wavelet packets and fast Fourier transform[J]. Southern Power System Technology, 2013, 7(3): 89-93. |
|
|
|