|
|
Failure Analysis and Improvement Measures of Epoxy Material for Fixed Coil in Electromagnetic Repulsion Mechanism |
Dong Runpeng, Zhuang Jinwu, Wu Jin, Hu Xinkai |
College of Electric Engineering Naval University of Engineering Wuhan 430033 China |
|
|
Abstract Aiming at the crack problem of the epoxy material fixed for the repulsion coils after repeated use, in this paper, the cause of failure and improvement measures are discussed based on the finite element method (FEM) and experiments. The stress distribution of epoxy material is obtained by coupling the electromagnetic field and the structure field, and the reasons for the damage of epoxy material are explained. The method of using circular constraint instead of constraint in the four corners is proposed to reduce the stress. Thin epoxy sheet is added to the upper end of the coils to change the constraint position and solve the cracking problem of epoxy adhesive. Finally, two sets of prototypes are designed for current shock test and tolerance test respectively. The results of simulation and experiment show that compared with the constraint in the four corners, the stress amplitude of epoxy plate under circular constraint decreases significantly, and the stress amplitude of epoxy material can be effectively reduced by adding thin epoxy sheet over the repulsion coils. Besides that, no bending or cracking of epoxy plate occurs after 5 000 tolerance experiments.
|
Received: 20 November 2019
|
|
|
|
|
[1] McCoy T J. Integrated power systems—an outline of requirements and functionalities for ships[J]. Proceedings of the IEEE, 2015, 103(12): 2276-2284. [2] Doerry N.Naval power systems: integrated power systems for the continuity of the electrical power supply[J]. IEEE Electrification Magazine, 2015, 3(2): 12-21. [3] 付立军, 刘鲁锋, 王刚, 等. 我国舰船中压直流综合电力系统研究进展[J]. 中国舰船研究, 2016, 11(1): 72-79. Fu Lijun, Liu Lufeng, Wang Gang, et al.The research progress of the medium voltage DC integrated power system in China[J]. Chinese Journal of Ship Research, 2016, 11(1): 72-79. [4] 吴翊, 荣命哲, 钟建英, 等.中高压直流开断技术[J].高电压术, 2018, 44(2): 337-346. Wu Yi, Rong Mingzhe, Zhong Jiaying, et al.Medium and high voltage DC breaking technology[J]. High-Voltage Technology, 2018, 44(2): 337-346. [5] 董文亮, 郭兴宇, 梁德世, 等. 基于电磁斥力机构的直流真空断路器模块[J]. 电工技术学报, 2018, 33(5): 1068-1075. Dong Wenliang, Guo Xingyu, Liang Deshi, et al.A DC vacuum circuit breaker based on electromagnetic repulsion actuator[J]. Transactions of China Electrotechnical Society, 2018, 33(5): 1068-1075. [6] 刘路辉, 叶志浩, 付立军, 等. 快速直流断路器研究现状与展望[J]. 中国电机工程学报, 2017, 37(4): 966-978. Liu Luhui, Ye Zhihao, Fu Lijun, et al.Research & development status and prospects of fast DC circuit breakers[J]. Proceedings of the CSEE, 2017, 37(4): 966-978. [7] Franck C M.HVDC circuit breakers: a review identifying future research needs[J]. IEEE Transactions on Power Delivery, 2011, 26(2): 998-1007. [8] Basu S, Srivastava K D.Electromagnetic forces on a metal disk in an alternating magnetic field[J]. IEEE Transactions on Power Apparatus and Systems, 1969 (8): 1281-1285. [9] Takeuchi T, Koyama K, Tsukima M.Electromagnetic analysis coupled with motion for high‐speed circuit breakers of eddy current repulsion using the tableau approach[J]. Electrical Engineering in Japan, 2005, 152(4): 8-16. [10] Liu Luhui, Zhuang Jinwu, Chen Wang, et al.A hybrid DC vacuum circuit breaker for medium voltage: principle and first measurements[J]. IEEE Transactions on Power Delivery, 2015, 30(5): 2096-2101. [11] 王子建, 何俊佳, 尹小根, 等. 基于电磁斥力机构的 10kV快速真空开关[J]. 电工技术学报, 2009, 24(11): 68-75. Wang Zijian, He Junjia, Yin Xiaogen, et al.10kV high speed vacuum switch with electromagnetic repulsion mechanism[J]. Transactions of China Electrotechnical Society, 2009, 24(11): 68-75. [12] Peng C, Mackey L, Husain I, et al.Active damping of ultrafast mechanical switches for hybrid AC and DC circuit breakers[J]. IEEE Transactions on Industry Applications, 2017, 53(6): 5354-5364. [13] Wen Weijie, Huang Yulong, Al-Dweikat M, et al.Research on operating mechanism for ultra-fast 40.5-kV vacuum switches[J]. IEEE Transactions on Power Delivery, 2015, 30(6): 2553-2560. [14] Li Wei, Jeong Y W, Koh C S.An adaptive equivalent circuit modeling method for the eddy current-driven electromechanical system[J]. IEEE Transactions on Magnetics, 2010, 46(6): 1859-1862. [15] Pham M T, Ren Z, Li W, et al.Optimal design of a Thomson-coil actuator utilizing a mixed-integer-discrete-continuous variables global optimization algorithm[J]. IEEE Transactions on Magnetics, 2011, 47(10): 4163-4166. [16] Li W, Ren Z Y, Jeong Y W, et al.Optimal shape design of a thomson-coil actuator utilizing generalized topology optimization based on equivalent circuit method[J]. IEEE Transactions on Magnetics, 2011, 47(5): 1246-1249. [17] Lim D K, Woo D K, Kim I W, et al.Characteristic analysis and design of a Thomson coil actuator using an analytic method and a numerical method[J]. IEEE Transactions on Magnetics, 2013, 49(12): 5749-5755. [18] 张力, 阮江军, 黄道春, 等. 双盘式线圈结构快速斥力机构设计与运动特性仿真研究[J]. 电工技术学报, 2018, 33(2): 255-264. Zhang Li, Ruan Jiangjun, Huang Daochun, et al.Study on the design and movement characteristics simulation of a fast repulsion mechanism based on double-coil structure[J]. Transactions of China Electrotechnical Society, 2018, 33(2): 255-264. [19] 温伟杰, 李斌, 李博通, 等. 电磁斥力机构的参数匹配与优化设计[J]. 电工技术学报, 2018, 33(17): 4102-4112. Wen Weijie, Li Bin, Li Botong, et al.Parameters matching and optimal design of the electromagnetic repulsion mechanism[J]. Transactions of China Electrotechnical Society, 2018, 33(17): 4102-4112. [20] Puumala V, Kettunen L.Electromagnetic design of ultrafast electromechanical switches[J]. IEEE Transactions on Power Delivery, 2015, 30(3): 1104-1109. [21] Peng Chang, Huang A, Husain I, et al.Drive circuits for ultra-fast and reliable actuation of Thomson coil actuators used in hybrid ac and DC circuit breakers[C]//Applied Power Electronics Conference and Exposition (APEC), IEEE, California, USA, 2016: 2927-2934. [22] Bissal A, Magnusson J, Engdahl G.Electric to mechanical energy conversion of linear ultrafast electromechanical actuators based on stroke requirements[J]. IEEE Transactions on Industry Applications, 2015, 51(4): 3059-3067. [23] 程显, 赵海洋, 葛国伟, 等. 基于螺线管和线圈盘的新型混合式斥力机构分析[J]. 电工技术学报: 2020, 35(14): 2997-3006. Cheng Xian, Zhao Haiyang, Ge Guowei, et al.Analysis of the new hybrid repulsion mechanism based on series-connected solenoid and coil plate[J]. Transactions of China Electrotechnical Society, 2020, 35(14): 2997-3006. [24] Vilchis-Rodriguez D S, Shuttleworth R, Barnes M. Experimental validation of a finite element 2D axial Thomson coil model with inductance and resistance compensation[C]//Proceedings of the 13th IET International Conference on AC and DC Power Transmission, Manchester, UK, 2017, DOI: 10.1049/ cp.2017.0032. [25] Peng Chang, Husain I, Huang A Q.Evaluation of design variables in Thompson coil based operating mechanisms for ultra-fast opening in hybrid AC and DC circuit breakers[C]//Proceedings of 2015 IEEE Applied Power Electronics Conference and Exposition, Charlotte, NC, USA, 2015: 2325-2332. [26] Bissal A, Magnusson J, Salinas E, et al.Multiphysics modeling and experimental verification of ultra-fast electro-mechanical actuators[J]. International Journal of Applied Electromagnetics and Mechanics, 2015, 49(1): 51-59. [27] 周煜韬, 戚连锁, 庄劲武, 等. 考虑弹性变形的电磁斥力机构运动特性分析及实验[J]. 中国电机工程学报, 2016, 36(增刊1): 206-212. Zhou Yutao, Qi Liansuo, Zhuang Jinwu, et al.Analysis and experimentation of motion characteristics in electromagnetic repulsion mechanism considering the elastic deformation[J]. Proceedings of the CSEE, 2016, 36(S1): 206-212. [28] 董润鹏, 庄劲武, 袁志方, 等. 电磁斥力机构的弹塑性形变分析与实验[J]. 中国电机工程学报, 2018, 38(23): 7080-7088. Dong Runpen, Zhuang Jinwu, Yuan Zhifang, et al.Elastoplastic deformation analysis and experiment of electromagnetic repulsion mechanism[J]. Proceedings of the CSEE, 2018, 38(23): 7080-7088. |
|
|
|