|
|
Power System Transient Stability Assessment Based on Hybrid Neighborhood Rough Reduction and Deep Forest |
Li Bingyang, Xiao Jianmei, Wang Xihuai |
Department of Electrical Automation Shanghai Maritime University Shanghai 201306 China |
|
|
Abstract In the operational process of power grid, transient stable samples and transient unstable samples are obviously imbalanced, and the cost of misclassifying stable samples is unequal to that of unstable samples. The existing transient stability assessment methods using data mining techniques are mostly based on shallow models, which pay little attention to the situation of misclassifying transient unstable samples. Moreover, the evaluation accuracy needs to be further improved. This paper proposes a power system transient stability assessment method integrating neighborhood rough reduction and deep forest. By using neighborhood rough sets at different granularity levels, several optimal feature subsets can be obtained to re-represent the original feature space. The cascade structure of deep forest can further strength the representation learning ability, which can reinforce the nonlinear mapping relation between features and transient stability state. The employment of weighted voting mechanism can make the learning process pay more attention to transient unstable samples. The experimental results on IEEE 10 machine 39 bus system show that the proposed method can effectively improve the evaluation accuracy and reduce the misclassification rate of transient unstable samples. Moreover, it also has a good performance on data sets with different scale and imbalance degrees, which is robust and applicable.
|
Received: 27 June 2019
|
|
|
|
|
[1] 王毅, 张宁, 康重庆, 等. 电力用户行为模型: 基本概念与研究框架[J]. 电工技术学报, 2019, 34(10): 2056-2068. Wang Yi, Zhang Ning, Kang Chongqing, et al.Electrical consumer behavior model: basic concept and research framework[J]. Transactions of China Electrotechnical Society, 2019, 34(10): 2056-2068. [2] 陈国恩, 李伟, 张仲孝. 电网故障诊断方法及其系统架构的研究[J]. 电气技术, 2018, 19(1): 64-67. Chen Guoen, Li Wei, Zhang Zhongxiao.Research on power grid fault diagnosis method and its system architecture[J]. Electrical Engineering, 2018, 19(1): 64-67. [3] 姜涛, 王长江, 陈厚合, 等. 基于正则化投影孪生支持向量机的电力系统暂态稳定评估[J]. 电力系统自动化, 2019, 43(1): 141-148. Jiang Tao, Wang Changjiang, Chen Houhe, et al.Transient stability assessment of power system based on projection twin support vector machine with regularization[J]. Automation of Electric Power Systems, 2019, 43(1): 141-148. [4] 谭本东, 杨军, 赖秋频. 基于改进CGAN的电力系统暂态稳定评估样本增强方法[J]. 电力系统自动化, 2019, 43(1): 149-157. Tan Bendong, Yang Jun, Lai Qiupin.Data augment method for power system transient stability assessment based on improved conditional generative adversarial network[J]. Automation of Electric Power Systems, 2019, 43(1): 149-157. [5] 罗深增, 李银红, 石东源. 广域测量系统可观性概率评估及其在PMU优化配置中的应用[J]. 电工技术学报, 2018, 33(8): 1844-1853. Luo Shenzeng, Li Yinhong, Shi Dongyuan.Wide area monitoring system observability probabilistic evaluation and it’s application in optimal PMU placement[J]. Transactions of China Electrotechnical Society, 2018, 33(8): 1844-1853. [6] Wahab N I A, Mohamed A, Hussain A. Fast transient stability assessment of large power system using probabilistic neural network with feature reduction techniques[J]. Expert Systems with Applications, 2011, 38: 11112-11119. [7] Wahab N I A, Mohamed A, Hussain A. Feature selection and extraction methods for power systems transient stability assessment employing computational intelligence techniques[J]. Neural Process Letter, 2012, 35: 81-102. [8] Gu Xueping, Li Yang, Jia Jinghua.Feature selection for transient stability assessment based on kernelized fuzzy rough sets and memetic algorithms[J]. International Journal of Electrical Power & Energy Systems, 2015, 64: 664-670. [9] 叶圣永, 王晓茹, 刘志刚, 等. 基于支持向量机的暂态稳定评估双阶段特征选择[J]. 中国电机工程学报, 2010, 30(31): 28-34. Ye Shengyong, Wang Xiaoru, Liu Zhigang, et al.Dual-stage feature selection for transient stability assessment based on support vector machine[J]. Proceedings of the CSEE, 2010, 30(31): 28-34. [10] 戴远航, 陈磊, 张玮灵, 等. 基于多支持向量机综合的电力系统暂态稳定评估[J]. 中国电机工程学报, 2016, 36(5): 1173-1180. Dai Yuanhang, Chen Lei, Zhang Weiling, et al.Power system transient stability assessment based on multi-support vector machines[J]. Proceedings of the CSEE, 2016, 36(5): 1173-1180. [11] 周艳真, 吴俊勇, 于之虹, 等. 用于电力系统暂态稳定预测的支持向量机组合分类器及其可信度评价[J]. 电网技术, 2017, 41(4): 1188-1196. Zhou Yanzhen, Wu Junyong, Yu Zhihong, et al.Support vector machine ensemble classifier and its confidence evaluation for transient stability prediction of power systems[J]. Power System Technology, 2017, 41(4): 1188-1196. [12] 王亚俊, 王波, 唐飞, 等. 基于响应轨迹和核心向量机的电力系统在线暂态稳定评估[J]. 中国电机工程学报, 2014, 34(19): 3178-3186. Wang Yajun, Wang Bo, Tang Fei, et al.Power system online transient stability assessement based on response trajectory and core vector machine[J]. Proceedings of the CSEE, 2014, 34(19): 3178-3186. [13] Wang Bo, Fang Biwu, Wang Yajun, et al.Power system transient stability assessment based on big data and the core vector machine[J]. IEEE Transactions on Smart Grid, 2016, 7(5): 2561-2570. [14] 陈厚合, 王长江, 姜涛, 等. 基于投影能量函数和Pin-SVM的电力系统暂态稳定评估[J]. 电工技术学报, 2017, 32(11): 67-76. Chen Houhe, Wang Changjiang, Jiang Tao, et al.Transient stability assessment in bulk power grid using projection energy function and support vector machine with Pinball loss[J]. Transactions of China Electrotechnical Society, 2017, 32(11): 67-76. [15] 张晨宇, 王慧芳, 叶晓君. 基于XGBoost算法的电力系统暂态稳定评估[J]. 电力自动化设备, 2019, 39(3): 77-89. Zhang Chenyu, Wang Huifang, Ye Xiaojun.Transient stability assessment of power system based on XGBoost algorithm[J]. Electric Power Automation Equipment, 2019, 39(3): 77-89. [16] 石访, 张林林, 胡熊伟. 基于多属性决策树的电网暂态稳定规则提取方法[J]. 电工技术学报, 2018, 33(23): 36-47. Shi Fang, Zhang Linlin, Hu Xiongwei.Power system transient stability rules extraction based on multi-attribute decision tree[J]. Transactions of China Electrotechnical Society, 2018, 33(23): 36-47. [17] Rahmatian M, Chen Y C, Palizban A.Transient stability assessment via decision trees and multivariate adaptive regression splines[J]. Electric Power Systems Research, 2017, 142: 320-328. [18] 朱乔木, 陈金富, 李弘毅. 基于堆叠自动编码器的电力系统暂态稳定评估[J]. 中国电机工程学报, 2018, 38(10): 2937-2946. Zhu Qiaomu, Chen Jinfu, Li Hongyi.Transient stability assessment based on stacked autoencoder[J]. Proceedings of the CSEE, 2018, 38(10): 2937-2946. [19] 李扬, 李国庆, 顾雪平, 等. 基于集成OS-ELM的暂态稳定评估方法[J]. 电工技术学报, 2015, 30(14): 412-418. Li Yang, Li Guoqing, Gu Xueping, et al.Transient stability assessment of power systems based on ensemble OS-ELM[J]. Transactions of China Electrotechnical Society, 2015, 30(14): 412-418. [20] 朱乔木, 党杰, 陈金富. 基于深度置信网络的电力系统暂态稳定评估方法[J]. 中国电机工程学报, 2018, 38(3): 735-743. Zhu Qiaomu, Dang Jie, Chen Jinfu.A method for power system transient stability assessment based on deep belief network[J]. Proceedings of the CSEE, 2018, 38(3): 735-743. [21] 胡伟, 郑乐, 闵勇. 基于深度学习的电力系统故障后暂态稳定评估研究[J]. 电网技术, 2017, 41(10): 3140-3146. Hu Wei, Zheng Le, Min Yong.Research on power system transient stability assessment based on deep learning of big data technique[J]. Power System Technology, 2017, 41(10): 3140-3146. [22] 尹雪燕, 闫炯程, 刘玉田. 基于深度学习的暂态稳定评估与严重度分级[J]. 电力自动化设备, 2018, 38(5): 64-69. Yin Xueyan, Yan Jiongcheng, Liu Yutian.Deep learning based transient stability assessment and severity grading[J]. Electric Power Automation Equipment, 2018, 38(5): 64-69. [23] 徐春华, 陈克绪, 马建, 等. 基于深度置信网络的电力负荷识别[J]. 电工技术学报, 2019, 34(19): 4135-4142. Xu Chunhua, Chen Kexu, Ma Jian, et al.Recognition of power loads based on deep belief network[J]. Transactions of China Electrotechnical Society, 2019, 34(19): 4135-4142. [24] 顾雪平, 李扬, 吴献吉. 基于局部学习机和细菌群体趋药性算法的电力系统暂态稳定评估[J]. 电工技术学报, 2013, 28(10): 271-279. Gu Xueping, Li Yang, Wu Xianji.Transient stability assessment of power systems based on local learning machine and bacterial colony chemotaxis algorithm[J]. Transactions of China Electrotechnical Society, 2013, 28(10): 271-279. [25] Li Bingyang, Xiao Jianmei, Wang Xihuai.Feature reduction for power system transient stability assessment based on neighborhood rough set and discernibility matrix[J]. Energies, 2018, 11(1): 185. [26] 唐飞, 王波, 查晓明, 等. 基于双阶段并行隐马尔科夫模型的电力系统暂态稳定评估[J]. 中国电机工程学报, 2013, 33(10): 90-97. Tang Fei, Wang Bo, Zha Xiaoming, et al.Power system transient stability assessment based on two-stage parallel hidden Markov model[J]. Proceedings of the CSEE, 2013, 33(10): 90-97. [27] Hu Qinghua, Yu Daren, Xie Zongxia.Neighborhood classifiers[J]. Expert Systems with Applications, 2008, 34: 866-876. [28] Breiman L.Random forests[J]. Machine Learning, 2001, 45(1): 5-32. [29] Liu F T, Ting Kaiming, Yang Yu.Spectrum of variable-random trees[J]. Journal of Artificial Intelligence Research, 2008, 32:355-384. [30] Geurts P, Ernst D, Wehenkel L.Extremely randomized trees[J]. Machine Learning, 2006, 63: 3-42. [31] Zhou Zhihua, Feng Ji.Deep forest: towards an alternative to deep neural networks[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence, Melbourne, Australia, 2017: 3553-3559. [32] Pai A M.Energy function analysis for power system stability[M]. Bonston: Kluwer Academic Publishers, 1989: 256. |
|
|
|