|
|
A Condition Detecting Method for the IGBT Module Based on Pulse Coupling Response |
Yao Chenguo1, Li Mengjie1,2, Yu Liang1, Dong Shoulong1, Liao Ruijin1 |
1. State Key Laboratory of Power Transmission Equipment & System Security and New TechnologyChongqing University Chongqing 400044 China; 2. China Southern Power Grid Co. Ltd Huizhou Power Bureau Huizhou 516001 China |
|
|
Abstract The reliable operation of the voltage source converter based high voltage direct current transmission (VSC-HVDC) valve depends mostly on inusated gate bipolar transistors (IGBT) in its submodules. Apart from the redundancy design of submodules, a real-time IGBTs’ status detecting also makes a great sense to the reliability improvement. Current methods are not able to realize the fast and real-time synchronous detection of IGBTs’ normal status, ageing procedure as well as different fault status. As a result, this paper carries out a conditioning detecting method based on pulse coupling response where a short high voltage pulse excitation is fed between the collector and the emitter. By analysing the output response of the equivalent two port network, IGBT’s status can be quickly detected within 1μs, as well as its fault type if it’s faulty. In the end, an experiment is carried out. Comparison between experiment results and Pspice simulation results validates the feasibility and correctness of proposed method.
|
Received: 16 January 2019
|
|
|
|
|
[1] 李亚男, 蒋维勇, 余世峰, 等. 舟山多端柔性直流输电工程系统设计[J]. 高电压技术, 2014, 40(8): 2490-2496. Li Yanan, Jiang Weiyong, Yu ShiFeng, et al. System design of Zhoushan multi-terminal VSC-HVDC transmission project[J]. High Voltage Engineering, 2014, 40(8): 2490-2496. [2] 刘大鹏, 程晓绚, 苟锐锋, 等. 异步联网工程柔性直流换流站过电压与绝缘配合[J]. 高压电器, 2015, 51(4): 104-108. Liu Dapeng, Chen Xiaoxuan, Gou Ruifeng, et al.Overvoltage and insulation coordination for MMC-HVDC asynchronous project[J]. High Voltage Apparatus, 2015, 51(4): 104-108. [3] 乔卫东, 毛颖科. 上海柔性直流输电示范工程综述[J]. 华东电力, 2011, 39(7): 1137-1140. Qiao Weidong, Mao Yingke.Overview of Shanghai flexible HVDC transmission demonstration project[J]. East China Electric Power, 2011, 39(7): 1137-1140. [4] 阳岳希, 贺之渊, 周杨, 等. 厦门±320kV柔性直流输电工程的控制方式和运行性能[J]. 智能电网, 2016, 4(3): 229-234. Yang Yuexi, He Zhiyuan, Zhou Yang, et al.Control mode and operating performance of Xiamen ±320 kV VSC-HVDC project[J]. Smart Grid, 2016, 4(3): 229-234. [5] 杨柳, 黎小林, 许树楷, 等. 南澳多端柔性直流输电示范工程系统集成设计方案[J]. 南方电网技术, 2015, 9(1): 63-67. Yang Liu, Li Xiaolin, Xu Shukai, et al.The integrated system design scheme of Nan'ao VSC-MTDC demonstration project[J]. Southern Power System Technology, 2015, 9(1): 63-67. [6] 汤广福, 王高勇, 贺之渊, 等. 张北500 kV直流电网关键技术与设备研究[J]. 高电压技术, 2018, 44(7): 2097-2106. Tang Guangfu, Wang Gaoyong, He Zhiyuan, et al.Research on key technology and equipment for Zhangbei 500kV DC grid[J]. High Voltage Engineering, 2018, 44(7): 2097-2106. [7] 汤广福. 500kV直流电网关键技术与设备研究[J]. 电气应用, 2018, 37(21): 4-7. Tang Guangfu.Research on key technologies and equipment of VSC-HVDC power network[J]. Electrotechnical Application, 2018, 37(21): 4-7 [8] 温家良, 葛俊, 潘艳, 等. 直流电网用电力电子器件发展与展望[J]. 电网技术, 2016, 40(03): 663-669. Wen Jialiang, Ge Jun, Pan Yan, et al.Development and expectation of power electronic devices for DC grid[J]. Power System Technology, 2016, 40(3): 663-669. [9] Yang Shaoyong, Bryant A, Mawby P, et al.An industry-based survey of reliability in power electronic converters[J]. IEEE Transactions on Industry Applications, 2011, 47(3): 1441-1451. [10] 管敏渊, 徐政. 模块化多电平换流器子模块故障特性和冗余保护[J]. 电力系统自动化, 2011, 35(16): 94-98,104. Guan Mingyuan, Xu Zhen.Redundancy protection for sub module faults in modular multilevel converter[J]. Automation of Electric Power Systems, 2011, 35(16): 94-98,104. [11] Lu Bin, Sharma S K.A literature review of IGBT fault diagnostic and protection methods for power inverters[J]. IEEE Transactions on Industry Applicati-ons, 2009, 45(5): 1770-1777. [12] Huang F, Flett F.IGBT fault protection based on di/dt feedback control[C]// Proceedings of the 2007 IEEE Power Electronics Specialists Conference, Orlando, FL, USA, 2007, DOI:10.1109/PES.2007. 4342213. [13] Wu Rui, Smirnova L, Iannuzzo F, et al.Investigation on the short-circuit behavior of an aged IGBT module through a 6 kA/1.1 kV non-destructive testing equipment[C]//IECON 2014-40th Annual Conference of the IEEE Industrial Electronics Society, Dallas, TX, USA, 2014, DOI: 10.1109/ IECON.2014. 7048996. [14] Shao Shuai, Wheeler P W, Clare J C, et al.Fault detection for modular multilevel converters based on sliding mode observer[J]. IEEE Transactions on Power Electronics, 2013, 28(11): 4867-4872. [15] Deng Fujin, Chen Zhe, Khan M R, et al.Fault detection and localization method for modular multilevel converters[J]. IEEE Transactions on Power Electronics, 2015, 30(5): 2721-2732. [16] Yang Qichen, Qin Jiangchao, Saeedifard M.Analysis, detection, and location of open-switch submodule failures in a modular multilevel converter[J]. IEEE Transactions on Power Delivery, 2016, 31(1): 155-164. [17] Bahman A S, Ma K, Blaabjerg F.A lumped thermal model including thermal coupling and thermal boundary conditions for high-power IGBT modules[J]. IEEE Transactions on Power Electronics, 2018, 33(3): 2518-2530. [18] Bahman A S, Ma K, Ghimire P, et al.A 3D lumped thermal network model for long-term load profiles analysis in high power IGBT modules[J]. IEEE Journal of Emerging & Selected Topics in Power Electronics, 2016, 4(3): 1050-1063. [19] Wu Rui, Wang Huai, Pedersen K B, et al.A temperature-dependent thermal model of IGBT modules suitable for circuit-level simulations[J]. IEEE Transactions on Industry Applications, 2016, 52(4): 3306-3314. [20] 杜雄, 李腾飞, 夏俊, 等. 基于零输入响应的Cauer型RC网络参数辨识方法[J]. 电工技术学报, 2017, 32(1): 222-30. Du Xiong, Li Tengfei, Xia Jun, et al.Identification method for Cauer type RC network parameter based on the zero-input response[J]. Transactions of China Electrotechnical Society, 2017, 32(1): 222-30. [21] 李辉, 胡姚刚, 刘盛权, 等. 计及焊层疲劳影响的风电变流器IGBT模块热分析及改进热网络模型[J]. 电工技术学报, 2017, 32(13): 80-87. Li Hui, Hu Yaogang, Liu Shengquan, et al.Thermal analysis and improved thermal network model of IGBT module for wind power converter considering solder fatigue effects[J]. Transactions of China Electrotechnical Society, 2017, 32(13): 80-87. [22] 唐云宇, 林燎源, 马皓. 一种改进的并联IGBT模块瞬态电热模型[J]. 电工技术学报, 2017, 32(12): 88-96. Tang Yunyu, Lin Liaoyuan, Mao Hao.An improved transient electro-thermal model for paralleled IGBT modules[J]. Transactions of China Electrotechnical Society, 2017, 32(12): 88-96. [23] 李武华, 陈玉香, 罗皓泽, 等. 大容量电力电子器件结温提取原理综述及展望[J]. 中国电机工程学报, 2016, 36(13): 3546-3557. Li Wuhua, Chen Yuxiang, Luo Haoze, et al.Review and prospect of junction temperature extraction principle of high power semiconductor devices[J]. Proceedings of the CSEE, 2016, 36(13): 3546-3557. [24] Xiang D, Ran L, Tavner P, et al.Condition monitoring power module solder fatigue using inverter harmonic identification[J]. IEEE Transactions on Power Electronics, 2011, 27(1): 235-247. [25] 龚灿, 孙鹏菊, 杜雄, 等. 基于键合线压降的IGBT模块内部缺陷监测研究[J]. 电源学报, 2016, 14(6): 153-162. Gong Can, Sun Pengju, Du Xiong, et al.Research on condition monitoring for defects inside IGBT modules based on voltage drop of bond wires[J]. Journa of Power Supply, 2016, 14(6): 153-162. [26] 彭英舟, 周雒维, 张晏铭, 等. 基于键合线等效电阻的IGBT模块老化失效研究[J]. 电工技术学报, 2017, 32(20): 117-123, 132. Peng Yingzhou, Zhou Luowei, Zhang Yanming, et al.Study of IGBT module aging failure base on bond wire equivalent resistance[J]. Transactions of China Electrotechnical Society,2017, 32(20): 117-123, 132. [27] 李亚萍, 周雒维, 孙鹏菊, 等. 基于特定集电极电流下饱和压降的IGBT模块老化失效状态监测方法[J]. 电工技术学报, 2018, 33(14): 3202-3212. Li Yaping, Zhou Luowei, Sun Pengju, et al.Condition monitoring for IGBT module aging failure on vce (on) under certain ic conditions[J]. Transactions of China Electrotechnical Society, 2018, 33(14): 3202-3212. [28] 周雒维, 周生奇, 孙鹏菊. 基于杂散参数辨识的IGBT模块内部缺陷诊断方法[J]. 电工技术学报, 2012, 27(5): 156-163. Zhou Luowei, Zhou Shengqi, Sun Pengju, et al.Diagnostic method for internal defects of IGBTs base on stray parameter identification[J]. Transactions of China Electrotechnical Society, 2012, 27(5): 156-163. [29] Lu Hua, Bailey C, Yin Chunyan.Design for reliability of power electronics modules[J]. Micro- electronics Reliability, 2009, 49(9-11): 1250-1255. |
|
|
|