|
|
Research on Adaptive Current Control Method in Circuit Breaker Protection Characteristic Test |
You Yingmin1,2, Wang Jingqin1, Shu Liang2, Zhang Haigen2, Chen Chong2 |
1. State Key Laboratory for Reliability and Intelligence of Electrical Equipment Hebei University of Technology Tianjin 300130 China; 2. Yueqing Institute of Industry Wenzhou University Wenzhou 325000 China |
|
|
Abstract Current converter is the core device to test the protection characteristics of circuit breaker. The existing test methods lack power factor adjustment. The current accuracy and stability also need to be improved. An adaptive control strategy for the circuit breaker testing application is proposed, in which a two-stage dual closed-loop control method is presented based on the front-stage fuzzy control and the post-stage impedance compensation. For the front-stage power factor compensation unit, the tracking error is introduced into the Sugeno-type fuzzy control to compensate the front-stage DC voltage tracking. At the post stage, a discrete impedance integration method is used to adaptively calculate the load impedance and an impedance compensation is then performed to improve current accuracy. The power factor correction and current accuracy are compared via both simulation and experiments. Comparison results show that compared with conventional method, the proposed strategy is able to reduce the current error from 3% to 1.2%. The maximum reduction ratio of THD is up to 17.1 %, which is significant to reduce the current distortion and grid harmonics.
|
Received: 14 February 2020
|
|
|
|
|
[1] Shu Liang, Guo Liang, Wu Guichu, et al.Research of thermal protection characteristics for circuit breakers considering nonlinear electro-thermal-structural[J]. Applied Thermal Engineering, 2019, 156: 85-94. [2] 舒亮, 刘源, 崔永昊, 等. 断路器测试中电流和功率因数补偿的组合控制策略研究[J]. 电器与能效管理技术, 2019(10): 57-63. Shu Liang, Liu Yuan, Cui Yonghao, et al.Research on combined control strategy of current and power factor compensation in circuit breaker testing[J]. Electrical and Energy Management Technology, 2019(10): 57-63. [3] Saugata S Biswas, Anurag K Srivastava, Dave Whitehead.A real-time data-driven algorithm for health diagnosis and prognosis of a circuit breaker trip assembly[J]. IEEE Transactions on Industrial Electronics, 2015, 62(6): 3822-3831. [4] 凌荣耀, 潘益斌, 黄书杭, 等. 断路器保护特性实验装置的设计及实现[J]. 中国电力教育, 2012, 226(3): 117-118. Ling Rongyao, Pan Yibin, Huang Shuhang, et al.Design and implementation of experimental device for protection characteristics of circuit breakers[J]. China Electric Power Education, 2012, 226(3): 117-118. [5] 杨松, 李艳芳, 徐欣歌, 等. 基于H桥及SPWM调制的大功率交流恒流源[J]. 机电技术, 2011, 3: 80-85. Yang Song, Li Yangfnag, Xu Xinge, et al.High power AC constant current source based on H-bridge and SPWM modulation[J]. Journal of Electromechanical Technology, 2011, 3: 80-85. [6] 赵升, 陈冲, 苏秀萍, 等. 大功率交流恒流源自适应PWM策略研究及其应用[J]. 电力电子技术, 2014, 48(7): 66-70. Zhao Sheng, Chen Chong, Su Xiuping, et al.Self-adaption control strategy of pulse width modulation in high power AC source[J]. Power Electronics, 2014, 48(7): 66-70. [7] 赵琛, 刘维亭, 魏海峰. 低压电器检测用交流恒流源系统设计[J]. 电子设计工程, 2017, 25(13): 151-155. Zhao Chen, Liu Weiting, Wei Haifeng.Research on AC constant current source system for low voltage electrical apparatus testing[J]. Electronic Design Engineering, 2017, 25(13): 151-155. [8] Jitendra Solanki, Norbert Frohleke, Joachim Bocker, et al.High-current variable-voltage rectifiers: state of the art topologies[J]. ET Power Electronics, 2015, 8(6): 1068-1080. [9] 任海鹏, 刘丁. 基于Matlab的PFC BOOST变换器仿真研究与实验验证[J]. 电工技术学报, 2006, 21(5): 29-35. Ren Haipeng, Liu Ding.Simulation on power factor correction BOOST converter based on Matlab and itis experimental verification[J]. Transactions of China Electrotechnical Society, 2006, 21(5): 29-35. [10] 马皓, 郎芸萍. 一种关于单相Boost功率因数校正器数字控制的改进算法[J]. 电工技术学报, 2006, 21(2): 83-87. Ma Hao, Lang Yunping.An improved algorthm DSP implementation of Boost PRC converter[J]. Transactions of China Electrotechnical Society, 2006, 21(2): 83-87. [11] Kitcharoenwat S, Konghirun M, Sangswang A.A novel single-phase AC-AC converter for circuit breaker testing application[J]. IEEE Transactions on Industrial Applications, 2014, 50(6): 3867-3875. [12] 任小永, 白雷, 惠琦, 等. 一种快速动态响应低电压纹波功率因数校正变换器的控制策略[J]. 电工技术学报, 2019, 34(14): 2937-2945. Ren Xiaoong, Bai Lei, Hui Qi, et al.Control strategy of power factor correction converter for fast dynamic response and low output voltage ripple[J]. Transactions of China Electrotechnical Society, 2019, 34(14): 2937-2945. [13] 朱熀秋, 杜伟. 基于模糊神经网络逆系统的无轴承永磁同步电机解耦控制[J]. 中国电机工程学报, 2019, 39(4): 1190-1198. Zhu Huangqiu, Du Wei, Decoupling control of bearingless permanent magnet synchronous motor based on inverse system using the adaptive neural-fuzzy inference system[J]. Proceeding of the CSEE, 2019, 39(4): 1190-1198. [14] 卢浩, 王群京, 陈权, 等. 三相光伏逆变器软起动改进模糊控制研究[J]. 电力电子技术, 2015, 49(6): 74-77. Lu Hao, Wang Jingqun, Chen Quan, et al.Soft start of three-phase photovoltaic inverter based on modified segmentation fuzyzy control[J]. Power Electronics, 2015, 49(6): 74-77. [15] Sun Xiaodong, Long Chen, Yang Zebin.Overview of bearingless permanent magnet synchronous motors[J]. IEEE Transactions on Industrial Electronics, 2013, 60(12): 5528-5538. [16] 刘和祥, 胡敏强, 余海涛, 等. 基于磁悬浮小车系统的自适应模糊滑模-PID混合控制方案[J]. 电工技术学报, 2013, 28(6): 93-100. Liu Hexiang, Hu Minqiang, Yu Haitao, et al.Scheme of variable universe fuzzy sliding mode adaptive and PID hybrid controller for magley vehicle[J]. Transactions of China Electrotechnical Society, 2013, 28(6): 93-100. [17] 张博彦, 齐铂金, 周阳, 等. 基于模糊PID算法的半桥DC/DC控制器的优化设计[J]. 电力电子技术, 2018, 52(9): 74-77. Zhang Boyan, Qi Bojin, Zhou Yang, et al.Optimal design of half-bridge DC/DC controller based on fuzzy PID algorithm[J]. Power Electronics, 2018, 52(9): 74-77. [18] Alexander G Perry, Feng Guang, Liu Yanfei, et al.A design method for PI-like fuzzy logic controllers for DC-DC converter[J]. IEEE Transactions on Industrial Electronics, 2007, 54(5): 2688-2696. [19] 郭亦文, 李军, 耿林霄, 等. 基于遗传算法获取模糊规则[J]. 计算机应用, 2014, 34(10): 2899-2903. Guo Yiwen, Li Jun, Geng Linxiao, et al.Fuzzy rule extraction based on genetic algorithm[J]. Journal of Computer Applications, 2014, 34(10): 2899-2903. [20] 张景元. 基于神经网络的自适应模糊控制系统[J]. 计算机工程与设计, 2014, 34(10): 3613-3684. Zhang Jingyuan.Self-adaptive fuzzy control systems based on neural networks[J]. Computer Engineering and Design, 2014, 34(10): 3613-3684. |
|
|
|