|
|
Modeling and Analysis of Active Power-Frequency Response of Parallel VSGs Using a P/ω “Admittance” |
Yan Xiangwu1, Jia Jiaoxin1, Wang Desheng1, Qin Benshuang1, He Xiaoyang2 |
1. Key Laboratory of Distributed Energy Storage and Micro-Grid of Hebei Province North China Electric Power University Baoding 071003 China; 2. State Grid Liaoning Electric Power Supply Co. Ltd Shenyang 110006 China |
|
|
Abstract For the existing P/ω “admittance” model, the load disturbance and active-power response of VSGs were considered, but the input of active-power reference and the response of angular frequency were not considered. So the extended P/ω “admittance” model of the multi-VSG parallel system was established. When the parameters of each VSG are matched, the P/ω “admittance” is proportional and two key conclusions are further derived. In the case of load disturbance, the active-power response of VSGs directly enters the steady state process, and the angular-frequency dynamic characteristic is the same as that of any a VSG in the single off-grid mode; in the case of the reference input, the active-power dynamic characteristic of VSGs is the same as that of any a VSG in the single on-grid mode, and the angular-frequency dynamic characteristic is determined by the response of any a VSG in the off-grid and on-grid mode. The simulation and experiment results are consistent with the theoretical analysis, which shows that the model can fully describe the power-frequency response characteristics of the parallel VSGs.
|
Received: 17 July 2019
|
|
|
|
|
[1] 黄林彬, 辛焕海, 黄伟, 等. 含虚拟惯量的电力系统频率响应特性定量分析方法[J]. 电力系统自动化, 2018, 42(8): 31-38. Huang Linbin, Xin Huanhai, Huang Wei, et al.Quantified analysis method of frequency response characteristics for power systems with virtual inertia[J]. Automation of Electric Power Systems, 2018, 42(8): 31-38. [2] 曾正, 赵荣祥, 吕志鹏, 等. 光伏并网逆变器的阻抗重塑与谐波谐振抑制[J]. 中国电机工程学报, 2014, 34(27): 4547-4558. Zeng Zheng, Zhao Rongxiang, Lü Zhipeng, et al.Impedance reshaping of grid-tied inverters to damp the series and parallel harmonic resonances of photovoltaic systems[J]. Proceedings of the CSEE, 2014, 34(27): 4547-4558. [3] 石荣亮, 张兴, 徐海珍, 等. 光储柴独立微电网中的虚拟同步发电机控制策略[J]. 电工技术学报, 2017, 32(23): 127-139. Shi Rongliang, Zhang Xing, Xu Haizhen, et al.A control strategy for islanded photovoltaic-battery- diesel microgrid based on virtual synchronous generator[J]. Transactions of China Electrotechnical Society, 2017, 32(23): 127-139. [4] 吕志鹏, 盛万兴, 钟庆昌, 等. 虚拟同步发电机及其在微电网中的应用[J]. 中国电机工程学报, 2014, 34(16): 2591-2603. Lü Zhipeng, Sheng Wanxing, Zhong Qingchang, et al.Virtual synchronous generator and its applications in mcrogrid[J]. Proceedings of the CSEE, 2014, 34(16): 2591-2603. [5] 曾正, 邵伟华, 冉立, 等. 虚拟同步发电机的模型及储能单元优化配置[J]. 电力系统自动化, 2015, 39(13): 22-31. Zeng Zheng, Shao Weihua, Ran Li, et al.Mathematical model and strategic energy storage selection of virtual synchronous generators[J]. Automation of Electric Power Systems, 2015, 39(13): 22-31. [6] Bevrani H, Ise T, Miura Y.Virtual synchronous generators: a survey and new perspectives[J]. International Journal of Electrical Power & Energy Systems, 2014, 54: 244-254. [7] Alsiraji H A, El-Shatshat R.Comprehensive assessment of virtual synchronous machine based voltage source converter controllers[J]. IET Generation, Transmission & Distribution, 2017, 11(7): 1762-1769. [8] Tan Shulong, Geng Hua, Yang Geng.Modeling framework of voltage-source converters based on equivalence with synchronous generator[J]. Journal of Modern Power Systems and Clean Energy, 2018, 6(6):1291-1305. [9] Liu Jia, Miura Y, Ise T.Comparison of dynamic characteristics between virtual synchronous generator and droop control in inverter-based distributed generators[J]. IEEE Transactions on Power Electronics, 2016, 31(5): 3600-3611. [10] Hirase Y, Sugimoto K, Sakimoto K, et al.Analysis of resonance in microgrids and effects of system frequency stabilization using a virtual synchronous generator[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2016, 4(4): 1287-1298. [11] 付强, 杜文娟, 王海风. 多虚拟同步发电机接入对电力系统机电振荡模式的影响[J]. 中国电机工程学报, 2018, 38(19): 5615-5624. Fu Qiang, Du Wenjuan, Wang Haifeng.Influence of multi virtual synchronous generators on power system electromechanical oscillation mode[J]. Proceedings of the CSEE, 2018, 38(19): 5615-5624. [12] 张波, 颜湘武, 黄毅斌, 等. 虚拟同步机多机并联稳定控制及其惯量匹配方法[J]. 电工技术学报, 2017, 32(10): 42-52. Zhang Bo, Yan Xiangwu, Huang Yibin, et al.Stability control and inertia matching method of multi-parallel virtual synchronous generators[J]. Transactions of China Electrotechnical Society, 2017, 32(10): 42-52. [13] 涂春鸣, 杨义, 兰征, 等. 含多虚拟同步发电机的微电网二次调频策略[J]. 电工技术学报, 2018, 33(10): 2186-2195. Tu Chunming, Yang Yi, Lan Zheng, et al.Secondary frequency regulation strategy in microgrid based on VSG[J]. Transactions of China Electrotechnical Society, 2018, 33(10): 2186-2195. [14] 任碧莹, 邱姣姣, 刘欢, 等. 基于虚拟同步发电机双机并联系统的参数自调节优化控制策略[J]. 电工技术学报, 2019, 34(1): 128-138. Ren Biying, Qiu Jiaojiao, Liu Huan, et al.Optimization control strategy of self-adjusting parameter based on dual-parallel virtual synchronous generators[J]. Transactions of China Electrotechnical Society, 2019, 34(1): 128-138. [15] 张辉, 王帆, 李晓强, 等. 虚拟同步发电机并联运行的阻抗匹配策略[J]. 电力系统自动化, 2018, 42(9): 69-74. Zhang Hui, Wang Fan, Li Xiaoqiang, et al.Impedance matching strategy for parallel virtual synchronous generators[J]. Automation of Electric Power Systems, 2018, 42(9): 69-74. [16] Mao Meiqin, Qian Cheng, Ding Yong.Decentralized coordination power control for islanding microgrid based on PV/BES-VSG[J]. CPSS Transactions on Power Electronics and Applications, 2018, 3(1): 14-24. [17] Aderibole A, Zeineldin H H, El-Moursi M S, et al. Domain of stability characterization for hybrid microgrids considering different power sharing conditions[J]. IEEE Transactions on Energy Conversion, 2018, 33(1): 312-323. [18] Alipoor J, Miura Y, Ise T.Stability assessment and optimization methods for microgrid with multiple vsg units[J]. IEEE Transactions on Smart Grid, 2018, 9(2): 1462-1471. [19] 王东东. 同步电机及虚拟同步电机的等效Lorenz模型及稳定性分析[D]. 广州: 华南理工大学, 2017. [20] Sun Jian.Small-signal methods for AC distributed power systems: a review[J]. IEEE Transactions on Power Electronics, 2009, 24(11): 2545-2554. [21] 刘倪, 张昌华, 段雪, 等. 并网逆变器小信号建模方法对比及其适用性分析[J]. 电力系统自动化, 2018, 42(23): 134-141. Liu Ni, Zhang Changhua, Duan Xue, et al.Comparison and applicability analysis of small- signal modeling methods for grid-connected inverter[J]. Automation of Electric Power Systems, 2018, 42(23): 134-141. [22] Leitner S, Yazdanian M, Mehrizi-Sani A, et al.Small-signal stability analysis of an inverter- based microgrid with internal model-based controllers[J]. IEEE Transactions on Smart Grid, 2018, 9(5): 5393-5402. [23] 颜湘武, 刘正男, 张波, 等. 具有同步发电机特性的并联逆变器小信号稳定性分析[J]. 电网技术, 2016, 40(3): 1-11. Yan Xiangwu, Liu Zhengnan, Zhang Bo, et al.Small-signal stability analysis of parallel inverters with synchronous generator characteristics[J]. Power System Technology, 2016, 40(3): 1-11. [24] 杜威, 姜齐荣, 洪芦诚, 等. 光伏微电网孤岛运行时多种振荡模式的小信号建模分析[J]. 电力系统自动化, 2014, 38(10): 17-23. Du Wei, Jiang Qirong, Hong Lucheng, et al.Small signal analysis of multiple oscillation modes in a photovoltaic microgrid[J]. Automation of Electric Power Systems, 2014, 38(10): 17-23. [25] Katiraei F, Iravani M R, Lehn P W.Small-signal dynamic model of a micro-grid including conventional and electronically interfaced distributed resources[J]. IET Generation, Transmission & Distribution, 2007, 1(3): 369-378. [26] Tang Xisheng, Deng Wei, Qi Zhiping.Investigation of the dynamic stability of microgrid[J]. IEEE Transactions on Power Systems, 2014, 29(2): 698-706. [27] 孟潇潇, 周念成, 王强钢. 逆变型分布式电源模型的多时间尺度降阶分析及稳定一致性证明[J]. 中国电机工程学报, 2018, 38(13): 3813-3825. Meng Xiaoxiao, Zhou Niancheng, Wang Qianggang.Multi-time scale model order reduction and stability consistency of IIDG system[J]. Proceedings of the CSEE, 2018, 38(13): 3813-3825. [28] Tao Yong, Liu Quanwei, Deng Yan, et al.Analysis and mitigation of inverter output impedance impacts for distributed energy resource interface[J]. IEEE Transactions on Power Electronics, 2015, 30(7): 3563-3576. [29] Yao Wei, Chen Min, Matas J, et al.Design and analysis of the droop control method for parallel inverters considering the impact of the complex impedance on the power sharing[J]. IEEE Transactions on Industrial Electronics, 2011, 58(2): 576-588. [30] 陈昕. 基于小信号模型的虚拟同步发电机稳定性分析与设计研究[D]. 成都: 电子科技大学, 2017. [31] 李伟龙, 安军, 周毅博. 基于两机扩展Heffron- Phillips模型的励磁系统调差系数对系统阻尼特性的影响[J]. 电网技术, 2017, 41(1): 222-229. Li Weilong, An Jun, Zhou Yibo, et al.Research on impact of excitation system adjustment coefficient on system damping characteristics based on extended two-machine Heffron-Phillips model[J]. Power System Technology, 2017, 41(1): 222-229. [32] 袁敞, 丛诗学, 徐衍会. 应用于微电网的并网逆变器虚拟阻抗控制技术综述[J]. 电力系统保护与控制, 2017, 45(9): 144-154. Yuan Chang, Cong Shixue, Xu Yanhui.Overview on grid-connected inverter virtual impedance technology for microgrid[J]. Power System Protection and Control, 2017, 45(9): 144-154. [33] 张平, 蔡环宇, 石健将, 等. 应用P/w(Q/E)“导纳”的逆变器并联系统稳定性分析方法[J]. 中国电机工程学报, 2016, 36(9): 2486-2493. Zhang Ping, Cai Huanyu, Shi Jianjiang, et al.Stability analysis of parallel inverter systems using a P/w(Q/E) “admittance”[J]. Proceedings of the CSEE, 2016, 36(9): 2486-2493. [34] 颜湘武, 贾焦心. VSG一次调频和转速振荡阻尼的解耦控制方案[J]. 电网技术, 2019, 43(5): 1566-1575. Yan Xiangwu, Jia Jiaoxin.Decoupling control of primary frequency regulation and rotational speed damping of VSG[J]. Power System Technology, 2019, 43(5): 1566-1575. [35] 颜湘武, 王俣珂, 贾焦心, 等. 基于非线性最小二乘曲线拟合的虚拟同步发电机惯量与阻尼系数测量方法[J]. 电工技术学报, 2019, 34(7):168-178. Yan Xiangwu, Wang Yuke, Jia Jiaoxin, et al.A VSG inertia and damping measurement method based on nonlinear least-squares curve fitting[J]. Transactions of China Electrotechnical Society, 2019, 34(7): 168-178. [36] 颜湘武, 贾焦心, 王德胜, 等. 虚拟同步发电机的并网功率控制及模式平滑切换[J]. 电力系统自动化, 2018, 42(9): 91-99. Yan Xiangwu, Jia Jiaoxin, Wang Desheng, et al.Power control and smooth mode switchover for grid-connected virtual synchronous generators[J]. Automation of Electric Power Systems, 2018, 42(9): 91-99. [37] 张也. 微网逆变电源的功率分配控制和同步运行特性研究[D]. 北京: 华北电力大学, 2016. |
|
|
|