|
|
Capacity Prediction of Lithium-Ion Batteries Based on Wavelet Noise Reduction and Support Vector Machine |
Zhang Tingting1, Yu Ming2,3, Li Bin2, Liu Zhe3 |
1. School of Electronics and Information Engineering Hebei University of Technology Tianjin 300401 China; 2. State Key Laboratory of Reliability and Intelligence of Electrical Equipment Hebei University of Technology Tianjin 300130 China; 3. School of Artificial Intelligence Hebei University of Technology Tianjin 300401 China |
|
|
Abstract As battery usage increases, the battery will age. By predicting the remaining capacity of the battery, reliable data support can be improved for the battery management system in the equipment system. In this study, support vector machine (SVM) is used to predict the remaining capacity of lithium-ion batteries. The improved chicken swarm algorithm (ICSO) is used to optimize the parameters of SVM. The ICSO-SVM model is established. In order to verify the feasibility of the prediction model, the following work has been done. Firstly, the capacity degradation data of B5 and B6 batteries were decomposed by db5 wavelet. And then the denoised signal was reconstructed. Secondly, the chicken swarm optimization algorithm (CSO) was improved and ICSO optimization algorithm was proposed. The convergence accuracy of ICSO is higher than that of PSO and CSO algorithms. Finally, two groups of experiments were used to verify the validity of the CSO-SVM model and the ICSO-SVM model. It is found that the average absolute deviation (AAD) value of ICSO-SVM model is less than 1.5%, RMSE value is less than 2% and average of R2 value is 0.972 6.
|
Received: 22 May 2019
|
|
|
|
|
[1] 葛少云, 朱林伟, 刘洪, 等. 基于动态交通仿真的高速公路电动汽车充电站规划[J]. 电工技术学报, 2018, 33(13): 2991-3001. Ge Shaoyun, Zhu Linwei, Liu Hong, et al.Optimal deployment of electric vehicle charging stations on the highway based on dynamic traffic simulation[J]. Transactions of China Electrotechnical Society, 2018, 33(13): 2991-3001. [2] 刘飘, 林培霞, 罗致远, 等. 基于闲置手机锂电池的多功能移动电源[J]. 电源技术, 2017, 41(4): 558-561. Liu Piao, Lin Peixia, Luo Zhiyuan, et al.Multi- functional movable power based on idle cellular Li-ion battery[J]. Chinese Journal of Power Sources, 2017, 41(4): 558-561. [3] 任仁良, 袁鹏. 航空锂电池故障检测与诊断[J]. 电源技术, 2018, 42(12): 1837-1840. Ren Renliang, Yuan Peng.Fault detection and diagnosis of lithium battery used in aviation[J]. Chinese Journal of Power Sources, 2018, 42(12): 1837-1840. [4] 李晓宇, 徐佳宁, 胡泽徽, 等. 磷酸铁锂电池梯次利用健康特征参数提取方法[J]. 电工技术学报, 2018, 33(1): 9-16. Li Xiaoyu, Xu Jianing, Hu Zewei, et al.The health parameter estimation method for LiFePO4 battery echelon use[J]. Transactions of China Electro- technical Society, 2018, 33(1): 9-16. [5] 陈英杰, 杨耕, 祖海鹏, 等. 基于恒流实验的锂离子电池开路电压与内阻估计方法[J]. 电工技术学报, 2018, 33(1): 9-16. Chen Yingjie, Yang Geng, Zu Haipeng, et al.An open circuit voltage and internal resistance estimation method of lithium-ion batteries with constant current tests[J]. Transactions of China Electrotechnical Society, 2018, 33(1): 9-16. [6] 谢长君, 费亚龙, 曾春年, 等. 基于无迹粒子滤波的车载锂离子电池状态估计[J]. 电工技术学报, 2018, 33(17): 3958-3964. Xie Changjun, Fei Yalong, Zeng Chunnian, et al.State-of-charge estimation of lithium-ion battery using unscented particle filter in vehicle[J]. Transa- ctions of China Electrotechnical Society, 2018, 33(17): 3958-3964. [7] 程泽, 孙幸勉, 程思璐. 一种锂离子电池荷电状态估计与功率预测方法[J]. 电工技术学报, 2017, 32(15): 180-189. Cheng Ze, Sun Xingmian, Cheng Silu.Method for estimation of state of charge and power prediction of lithium-ion battery[J]. Transactions of China Elec- trotechnical Society, 2017, 32(15): 180-189. [8] Wang Zengkai, Zeng Shengkui, Guo Jianbin, et al.Remaining capacity estimation of lithium-ion batteries based on the constant voltage charging profile[J]. Plos One, 2018, 13(7): 22. [9] 张伟, 卿鑫慧, 王一军, 等. 磷酸铁锂电池低温性能及放电容量预测研究[J]. 电源技术, 2019, 43(3): 430-433. Zhang Wei, Qing Xinhui, Wang Yijun, et al.Study on discharge performance and discharge capacity prediction of lithium iron phosphate battery at low- temperature[J]. Chinese Journal of Power Sources, 2019, 43(3): 430-433. [10] Ren Lei, Zhao Li, Hong Sheng, et al.Remaining useful life prediction for lithium-ion battery: a deep learning approach[J]. IEEE Access, 2018, 6: 50587-50598. [11] Li Lingling, Wang Pengchong, Chao Kuei-Hsiang, et al.Remaining useful life prediction for lithium-ion batteries based on gaussian processes mixture[J]. Plos One, 2016, 11(9): e0163004. [12] 赵美红, 刘佳庚. 基于非线性模型的动力电池容量损耗的预测[J]. 可再生能源, 2016, 34(7): 1067-1071. Zhao Meihong, Liu Jiageng.The prediction of capacity loss of power battery based on nonlinear model[J]. Renewable Energy Resources, 2016, 34(7): 1067-1071. [13] 刘柱, 姜媛媛, 罗慧, 等. 基于最优权阈值ELM算法的锂离子电池RUL预[J]. 电源学报, 2018, 16(4): 168-173. Liu Zhu, Jiang Yuanyuan, Luo Hui, et al.Prediction of lithium-ion battery RUL based on optimalweight and threshold using ELM algorithm[J]. Chinese Journal of Power Sources, 2018, 16(4): 168-173. [14] Li Lingling, Liu Zhifeng, Tseng Minglang.Enhancing the lithium-ion battery life predictability using a hybridmethod[J]. Applied Soft Computing Journal, 2019, 74: 110-121. [15] 孙冬, 许爽. 梯次利用锂电池健康状态预测[J]. 电工技术学报, 2018, 33(9): 2121-2129. Sun Dong, Xu Shuang.State of health prediction of second-use lithium-ion battery[J]. Transactions of China Electrotechnical Society, 2018, 33(9): 2121-2129. [16] Bi Fengrong, Ma Teng, Wang Xu.Development of a novel knock characteristic detection method for gasoline engines based on wavelet-denoising and EMD decomposition[J]. Mechanical Systems and Signal Processing, 2019, 117: 517-536. [17] Rajaee T, Jafari H.Utilization of WGEP and WDT models by wavelet denoising to predict water quality parameters in rivers[J]. Journal of Hydrologic Engineering, 2018, 23(12): 17. [18] Ding Y, Selesnick I W.Artifact-free wavelet denoising: non-convex sparse regularization, convex optimi- zation[J]. IEEE Signal Processing Letters, 2015, 22(9): 1364-1368. [19] 李化, 杨新春, 李剑, 等. 基于小波分解尺度系数能量最大原则的GIS局部放电超高频信号自适应小波去噪[J]. 电工技术学报, 2012, 27(5): 84-91. Li Hua, Yang Xinchun, Li Jian, et al.The maximum energy of wavelet decomposition approximation- related adaptive wavelet de-nosing for partial dis- charge UHF pulse in GIS[J]. Transactions of China Electrotechnical Society, 2012, 27(5): 84-91. [20] 彭道刚, 陈跃伟, 钱玉良, 等. 基于粒子群优化-支持向量回归的变压器绕组温度软测量模型[J]. 电工技术学报, 2018, 33(8): 1742-1749, 1761. Peng Daogang, Chen Yuewei, Qian Liangyu, et al.Transformer winding temperature soft measurement model based on particle swarm optimization-support vector regression[J]. Transactions of China Electro- technical Society, 2018, 33(8): 1742-1749, 1761. [21] 邱思语, 杨洪耕. 改进的加权支持向量机回归的谐波发射水平估计方法[J]. 电工技术学报, 2016, 31(5): 85-90. Qiu Siyu, Yang Honggeng.Assessment method of harmonic emission level based on the improved weighted support vector machine regression[J]. Transactions of China Electrotechnical Society, 2016, 31(5): 85-90. [22] Ertekin S, Bottou L, Giles C L.Nonconvex online support vector machines[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(2): 368-381. [23] Han B, Davis L S.Density-based multifeature background subtraction with support vector machine[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(5): 1017-1023. [24] Hussain S F.A novel robust kernel for classifying high-dimensional data using support vector machines[J]. Expert Systems with Applications, 2019, 131: 116-131. [25] Parhizkar E, Saeedzadeh H, Alunadi F, et al.Partial least squares-least squares-support vector machine modeling of ATR-IR as a spectrophotometric method for detection and determination of iron in pharma- ceutical formulations[J]. Iranian Journal of Pharma- ceutical Research, 2019, 18(1): 72-79. [26] Feng Tianpei, SunYuedong, Wang Yansong, et al. Sound feature space effects on the performance of annoyance evaluation model based on support vector machine[J]. Applied Acoustics, 2019, 154: 99-113. [27] Meng Xianbing, Liu Yu, Gao Xiaozhi, et al.A new bio-inspired algorithm: chicken swarm optimi- zation[J]. Advances in Swarm Intelligence, 2014, 5: 86-94. [28] Liang Jianhui, Wang Lifang, Ma Miao, et al.A fast SAR image segmentation method based on improved chicken swarm optimization algorithm[J]. Multimedia Tools and Applications, 2018, 77(24): 31787-31805. [29] Wu Zhongqiang, Yu Danqi, Kang Xiaohua.Appli- cation of improved chicken swarm optimization for MPPT in photovoltaic system[J]. Optimal Control Applications & Methods, 2018, 39(2): 1029-1042. [30] Liu Dong, Liu Chunlei, Fu Qiang, et al.Projection pursuit evaluation model of regional surface water environment based on improved chicken swarm optimization algorithm[J]. Water Resources Manage- ment, 2018, 32(4): 1325-1342. [31] Wang Zhifang, Wang Shuatao, Kong Deming, et al.Methane detection based on improved chicken algorithm optimization support vector machine[J]. Applied Sciences-Basel, 2019, 9(9): 15. [32] Yu Xiwu, Zhou Lixing, Li Xiangyang.A novel hybrid localization scheme for deep mine based on wheel graph and chicken swarm optimization[J]. Computer Networks, 2019, 154: 73-78. |
|
|
|