|
|
Simulation Researches on Vacuum Metal Vapor Arc Formation at the Initial Moment of Contact Parting |
Fu Si, Cao Yundong, Li Jing, Liu Shuxin, Han Ying |
Key Lab of Special Electric Machine and High Voltage Apparatus State Shenyang University of Technology Shenyang 110870 China |
|
|
Abstract The metal contacts provide the conductive medium needed to maintain the vacuum metal vapor. Therefore, the distribution of metal vapor affects the whole process of arc plasma formation. The conductive contact thermal process and gap breakdown process after the rupture of the molten metal bridge at the initial moment of contact parting are unified in the simulation. On the base of heat conduction equation and considering the phase transition process of the contact, the non-uniform distribution of metal vapor in the minimum space is obtained. Vacuum microscopic particle dynamics model is established under the influence of non-uniform distribution of metal vapor. The transport equations of electron and heavy particle are solved to reveal the arc formation process. Simulation results indicate that the metal vapor density produced by the phase transition of conductive contact is non-uniform distribution in the space, which is rapidly attenuated along the radial direction from the center. On account of the non-uniform distribution of metal vapor, the arc formation process goes through three stages: electron avalanche development, polar-region formation and initial conduction channel. The formation of vacuum gap conductive channel depends on the location of metal vapor density region.
|
Received: 14 June 2019
|
|
|
|
|
[1] 王建华, 耿英三, 刘志远. 输电等级单断口真空断路器理论及其技术[M]. 北京:机械工业出版社, 2016. [2] 李静. 高压断路器弧前微观机理研究[D]. 沈阳:沈阳工业大学, 2013. [3] Lafferty J M.Vacuum arcs theory and application[M]. New York: John Wiley & Sons Inc., 1980. [4] Schade E.Physics of high-current interruption of vacuum circuit breakers[J]. IEEE Transactions on Plasma Science, 2005, 33(5): 1564-1575. [5] Schulman M B, Slade P G, Heberlein J V R. Effect of an axial magnetic field upon the development of the vacuum arc between opening electric contacts[J]. IEEE Transactions on Components Hybrids and Manufacturing Technology, 1993, 16(2): 180-189. [6] 王立军, 胡丽兰, 周鑫, 等. 大尺寸电极条件下大电流真空电弧特性的仿真[J]. 电工技术学报, 2013, 28(2): 163-170. Wang Lijun, Hu Lilan, Zhou Xin, et al.Simulation of high-current vacuum arc characteristics with big-size electrode conditions[J]. Transactions of China Electrotechnical Society, 2013, 28(2): 163-170. [7] Haug R, Koukaou T, Doremieux J L.Phenomena preceding arc ignition between opening contacts: experimental study and theoretical approach[J]. IEEE Transactions, on Components, Hybrids and Manufacturing Technology, 1991, 14(3): 14-19. [8] Kharin S N, Ghori Q K.Influence of the pre-arcing bridging on the duration of vacuum arc[C]// Proceeding of International Symposium on Discharges and Electrical Insulation in Vacuum, Xi'an, China, 2000: 278-285. [9] Slade P G.The transition from to the metallic phase arc after the rupture of the molten metal bridge for contacts opening in air and vacuum[C]//Proceeding of IEEE Holm Conference on Electrical Contacts, Orlando, FL, 2008: 1-8. [10] Slade P G.Opening electrical contacts: the transition from the molten metal bridge to the electric arc[J]. IEICE Transactions on Electron, 2010, 93(9): 1380-1386. [11] 李静, 曹云东, 侯春光, 等. 交流电弧微观动态形成机理及影响因素[J]. 电工技术学报, 2015, 30(17): 45-54. Li Jing, Cao Yundong, Hou Chunguang, et al.Microscopic dynamic formation mechanism and influencing factors of AC vacuum arc[J]. Transactions of China Electrotechnical Society, 2015, 30(17): 45-54. [12] 刘志远, 纽春萍. 开关电器现代设计方法[M]. 北京: 机械工业出版社, 2018. [13] Beilis I I.State of the theory of vacuum arcs[J]. IEEE Transactions on Plasma Science, 2001, 29(5): 657-670. [14] 徐国顺, 吴国林, 庄劲武, 等. 小电流下真空电弧阴极斑点实验研究[J]. 华中科技大学学报: 自然科学版, 2015, 45(7): 54-57. Xu Guoshun, Wu Guolin, Zhuang Jinwu, et al.Experimental research on vacuum arc cathode spots in small current[J]. Journal Huazhong University of Science and Technology: Nature Science Edition, 2015, 45(7): 54-57. [15] Beilis I I, Keidar M, Boxman R L, et al.Theoretical study of plasma expansion in a magnetic field in a disk anode vacuum arc[J]. Journal of Applied Physics, 1998, 83(2): 709-717. [16] Mesyats G A, Uimanov I V.Hydrodynamics of the molten metal during the crater formation on the cathode surface in a vacuum arc[J]. IEEE Transactions on Plasma Science, 2015, 43(8): 2241-2246. [17] 伍玉鑫, 王阳明, 杨泽锋, 等. 电弧作用下浸铜碳材料烧蚀过程的数值模拟[J]. 电工技术学报, 2019, 34(6): 1119-1126. Wu Yuxin, Wang Yangming, Yang Zefeng, et al.Numerical simulation of ablation process of copper-impregnated carbon material under arc action[J]. Transactions of China Electrotechnical Society, 2019, 34(6): 1119-1126. [18] 朱寒, 何湘, 陈秉岩, 等. 容性耦合射频放电等离子体的仿真模拟与实验诊断研究[J]. 电工技术学报, 2019, 34(16): 3504-3511. Zhu Han, He Xiang, Chen Bingyan, et al.Simulations and experimental diagnostic of capacitively coupled RF discharge plasma[J]. Transactions of China Electrotechnical Society, 2019, 34(16): 3504-3511. [19] 荣命哲, 刘定新, 李美, 等. 非平衡态等离子体的仿真研究现状与新进展[J]. 电工技术学报, 2014, 29(6): 271-282. Rong Mingzhe, Liu Dingxin, Li Mei, et al.Research status and new progress on the numerical simulation of non-equilibrium plasmas[J]. Transactions of China Electrotechnical Society, 2014, 29(6): 271-282. [20] 荣命哲, 吴翊, 杨飞, 等. 开关电弧电流零区非平衡态等离子体仿真研究现状[J]. 电工技术学报, 2017, 32(2): 1-12. Rong Mingzhe, Wu Yi, Yang Fei, et al.Review on the simulation method of non-equilibrium arc plasma during current zero period in the circuit breaker[J]. Transactions of China Electrotechnical Society, 2017, 32(2): 1-12. [21] Tkachev A N, Fedenev A A, Yakovlenko S I.Townsend coefficient escape curve and fraction of runaway electron in copper vapor[J]. Laser Physics, 2007, 17(6): 775-779. [22] 翟国富, 薄凯, 李庆楠, 等. 直流电弧运动过程中重击穿现象及机理研究[J]. 电工技术学报, 2016, 31(11): 106-113. Zhai Guofu, Bo Kai, Li Qingnan, et al.Research on restriking phenomena and mechanism during dc arc motion process[J]. Transactions of China Electrotechnical Society, 2016, 31(11): 106-113. [23] Tan Zhilong, Guan Weiming, Guo Junmei, et al, Mechanical, electrical, and thermal coupled-field simulation of a molten metal bridge during contact separation[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2013, 3(6): 960-966. [24] 王立军, 贾申利, 史宗谦, 等. 电弧电流以及纵向磁场对小电流真空电弧特性影响的数值仿真[J]. 电工技术学报, 2007, 22(1): 54-61. Wang Lijun, Jia Shenli, Shi Zongqian, et al.Numerical simulation of effect of arc current and axial magnetic field on low current vacuum arc characteristics[J]. Transactions of China Electrotechnical Society, 2007, 22(1): 54-61. [25] 王立军, 邓杰, 周鑫, 等. 两种纵磁电极下真空电弧初始扩散过程的仿真研究[J]. 中国电机工程学报, 2014, 34(36): 6536-6544. Wang Lijun, Deng Jie, Zhou Xin, et al.Simulation researches of vacuum arcinitial diffusion process under two kinds of axial magnetic field electrodes[J]. Proceedings of the CSEE, 2014, 34(36): 6536-6544. [26] 向川, 黄智慧, 董华军, 等. 真空开关电弧形态演变实验与仿真研究[J]. 真空科学与技术学报, 2013, 33(9): 871-876. Xiang Chuan, Huang Zhihui, Dong Huajun, et al.Real time imaging and simulation of appearance variations in vacuum arc[J]. Chinese Journal of Vacuum Science and Technology, 2013, 33(9): 871-876. [27] 何寿杰, 哈静, 刘志强, 等. 流体-亚稳态原子传输混合模型模拟空心阴极放电特性[J]. 物理学报, 2013, 62(11): 115203-1-7. He Shoujie, Ha Jing, Liu Zhiqiang, et al. Simulation of hollow cathode discharge by combining the fluid model with a transport model for metastable Ar atoms[J]. Acta Physica Sinica, 2013, 62(11): 115203-1-7. |
|
|
|