|
|
Numerical Simulation and Experiment of Small Current DC Arc Considering Copper Vapor Medium |
Zhong Yuming1, Xiong Lan1, Yang Zikang1, Yang Jun2, Guo Ke1 |
1. State Key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing University Chongqing 400044 China 2. State Grid Electric Power Research Institute of Qinghai Power Supply Branch Xining 810000 China |
|
|
Abstract DC arc faults occur frequently due to factors such as insulation degradation and poor contact of cables. The DC arc can not be extinguished naturally because of no zero-crossing current/voltage so that it may cause device damage or fire. It is important to study DC arc properties for the detection of arc faults and safety protection for electrical appliances. Light spectral test data indicate the presence of copper particle in the arc. Therefore, conductivity-temperature characteristic curves of air containing copper vapor medium is proposed based on the equilibrium plasma theory. Meanwhile, a finite element model of small current air DC arc is built, then the temperature field distribution and the relationship between arc resistance and electrode spacing are obtained. By comparing experimental data and the simulation results, we find that the simulation data are much closer to experimental data when copper vapor is considered than that with pure air medium. When the arc burns stably, both the multi-physics field simulation and the experimental test show the similar temperature field distribution along two electrodes, in addition, the maximum gas temperature of plasma reaches 6 000 K~7 500K. The maximum deviation of arc resistance, versus electrode distance, between the simulation and experiment data is 2.283Ω, namely the relative error is 13.45%. Therefore, the arc simulation model considering copper vapor medium is more rational to study the conductivity properties of DC arc. Research work above provides a theoretical basis for electrical characteristics and temperature characteristics of small current DC arcs.
|
Received: 09 May 2019
|
|
|
|
|
[1] 王伟宗, 荣命哲, Yan J D, 等. 高压断路器SF6电弧电流零区动态特征和衰减行为的研究综述[J]. 中国电机工程学报, 2015, 35(8): 2059-2072. Wang Weizong, Rong Mingzhe, Yan J D, et al.Investigation of the dynamic characteristics and decaying behavior of SF6 arcs in high voltage circuit breakers during current-zero period: a review[J]. Proceedings of the CSEE, 2015, 35(8): 2059-2072. [2] 吴翊, 荣命哲, 王小华, 等. 触头打开过程中低压空气电弧等离子体的动态分析[J]. 电工技术学报, 2008, 23(5):12-17. Wu Yi, Rong Mingzhe, Wang Xiaohua, et al.Dynamic analysis of low-voltage air arc plasma during contact opening process[J]. Transactions of China Electrotechnical Society, 2008, 23(5): 12-17. [3] Murphy A B. The effects of metal vapour in arc welding[J]. Journal of Physics D: Applied Physics, 2010, 43(43):434001(1)-434001(31). [4] 林莘, 李鑫涛, 王飞鸣, 等. 触头烧损对SF6断路器介质恢复特性的影响[J]. 高电压技术, 2014, 40(10): 3125-3134. Lin Xin, Li Xintao, Wang Feiming, et al.Dielectric recovery characteristics of SF6 circuit breaker considering contact burning loss[J]. High Voltage Engineering, 2014, 40(10): 3125-3134. [5] Cressault Y.Influence of metallic vapours on the properties of air thermal plasmas[J]. Plasma Sources Science and Technology, 2008, 17(3): 35016-35016. [6] 姚钢, 纪飞鹏, 殷志柱, 等. 直流配电电能质量研究综述[J]. 电力系统保护与控制, 2017, 45(16): 163-170. Yao Gang, Ji Feipeng, Yin Zhizhu, et al.Review on the research of DC power distribution power quality[J]. Power System Protection and Control, 2017, 45(16): 163-170. [7] 陈博博, 屈卫锋, 杨宏宇, 等. 小电流接地系统单相接地综合电弧模型与选线方法的研究[J]. 电力系统保护与控制, 2016, 44(16): 1-7. Chen Bobo, Qu Weifeng, Yang Hongyu, et al.Research on single phase grounding arc model and line selection for neutral ineffectively grounding system[J]. Power System Protection and Control, 2016, 44(16): 1-7. [8] 李建南, 张慧媛, 王鲜花, 等. 中压电缆网接地故障的电弧建模及仿真研究[J]. 电力系统保护与控制, 2016, 44(24): 105-109. Li Jiannan, Zhang Huiyuan, Wang Xianhua, et al.Arc modeling and simulation of the ground faults of the middle voltage cable network[J]. Power System Protection and Control, 2016, 44(24): 105-109. [9] 荣命哲, 仲林林, 王小华, 等. 平衡态与非平衡态电弧等离子体微观特性计算研究综述[J]. 电工技术学报, 2016, 31(19): 54-65. Rong Mingzhe, Zhong Linlin, Wang Xiaohua, et al.Review of microscopic property calculation of equilibrium and non-equilibrium arc plasma[J]. Transactions of China Electrotechnical Society, 2016, 31(19): 54-65. [10] 翟国富, 薄凯, 周学, 等. 直流大功率继电器电弧研究综述[J]. 电工技术学报, 2017, 32(22): 257-269. Zhai Guofu, Bo Kai, Zhou Xue, et al.Investigation on breaking arc in DC high-power relays: a review[J]. Transactions of China Electrotechnical Society, 2017, 32(22): 257-269. [11] 司马文霞,贾文彬,袁涛,等. 多段微孔结构中电弧的磁流体模型及气吹灭弧性能仿真[J]. 高电压技术, 2016, 42(11): 3376-3382. Sima Wenxia, Jia Wenbin, Yuan Tao, et al.MHD model of arc in multi-segment microhole structure and simulation of air-blowing arc-quenching performance[J]. High Voltage Engineering, 2016, 42(11): 3376-3382. [12] 张仲麟, 聂秋月, 王志斌, 等. 大气压介质阻挡放电双频调制技术数值模拟研究[J]. 电工技术学报, 2017, 32(8): 48-54. Zhang Zhonglin, Nie Qiuyue, Wang Zhibin, et al.Numerical studies on the modulated strategy of atmospheric pressure dielectric barrier discharge plasmas driven by dual-frequency[J]. Transactions of China Electrotechnical Society, 2017, 32(8): 48-54. [13] 伍玉鑫, 王阳明, 杨泽锋, 等. 电弧作用下浸铜碳材料烧蚀过程的数值模拟[J]. 电工技术学报, 2019, 34(6): 5-12. Wu Yuxin, Wang Yangming, Yang Zefeng, et al.Numerical simulation of ablation process of copper-impregnated carbon material under arc action[J]. Transactions of China Electrotechnical Society, 2019, 34(6): 5-12. [14] Boulos M I, Fauchais P, Pfender E.Thermal plasmas[M]. New York: Springer US, 1994. [15] 崔行磊,周学,张勇,等. 基于彩色摄像和光谱分析联合测温方法的电弧温度场分布测量[J]. 电工技术学报, 2017, 32(15): 128-135. Cui Xinglei, Zhou Xue, Zhang Yong, et al.Measurement of static arc temperature distribution based on colorful photographing and spectroscopy analysis[J]. Transactions of China Electrotechnical Society, 2017, 32(15): 128-135. [16] Chervy B.Thermodynamic properties and transport coefficients in SF6-Cu mixtures at temperatures of 300-30000K and pressures of 0.1-1 MPa[J]. Journal of Physics D: Applied Physics, 1994, 27(6): 1193-1206. [17] 李和平, 于达仁, 孙文廷, 等. 大气压放电等离子体研究进展综述[J]. 高电压技术, 2016, 42(12): 3697-3727. Li Heping, Yu Daren, Sun Wenting, et al.State-of-the-art of atmospheric discharge plasmas[J]. High Voltage Engineering, 2016, 42(12): 3697-3727. [18] 胡海星, 高国强, 魏文赋, 等. 基于莫尔偏折的低温等离子体气体温度参数研究[J]. 电工技术学报, 2017, 32(20): 97-103. Hu Haixing, Gao Guoqiang, Wei Wenfu, et al.Research on the low gas temperature of discharge produced plasma based on Moire deflectometry[J]. Transactions of China Electrotechnical Society, 2017, 32(20): 97-103. [19] 戴栋, 宁文军, 邵涛. 大气压低温等离子体的研究现状与发展趋势[J]. 电工技术学报, 2017, 32(20): 1-9. Dai Dong, Ning Wenjun, Shao Tao.A review on the state of art and future trends of atmospheric pressure low temperature plasmas[J]. Transactions of China Electrotechnical Society, 2017, 32(20): 1-9. |
|
|
|