|
|
A Tie-Line Power Smoothing Strategy for Microgrid with Heat and Power System Using Source-Load-Storage Coordination Control |
Wang Xiaobo1, Huang Wentao1, Tai Nengling1, Wen Lili2, Fan Feilong1 |
1. School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University Shanghai 200240 China 2. State Grid Chongqing Economic Research Institute Chongqing 400044 China |
|
|
Abstract A coordination smoothing strategy of source (gas turbine), load (heat pump group) and storage (liquid heat storage and supercapacitor) was proposed to solve the problem of peak-to-valley difference and short-term fluctuation of tie-line power flow in heat-power coordinated microgrid with high penetration of renewable energy. By analogy with battery, a set containing elements which describ the state of each power flattening device was established. The power regulation coefficient and control coefficient of the gas turbine were set up by analyzing the electro-thermal coupling characteristics. Also, a time mark of heat pump group's status and a minimum open-close algorithm for heat pumps were proposed to control the heat pumps' switch status. Finally, the power smoothing potential of each device was tracked in real time, and the tie-line power smoothing target was adjusted relatively. Fuzzy control and composite filtering method were used to distribute the power smoothing task. Gas turbine, heat pump groups and supercapacitors stabilized the low, medium and high frequency parts of power fluctuations synergistically. The simulation results demonstrate the effectiveness and economy of the proposed smoothing strategy.
|
Received: 11 September 2019
|
|
|
|
|
[1] 孙宏斌, 潘昭光, 郭庆来. 多能流能量管理研究:挑战与展望[J]. 电力系统自动化, 2016, 40(15): 1-8, 16. Sun Hongbin, Pan Zhaoguang, Guo Qinglai.Energy management for multi-energy flow: challenges and prospects[J]. Automation of Electric Power Systems, 2016, 40(15): 1-8, 16. [2] Kienzle F, Ahcin P, Göran A.Valuing investments in multi-energy conversion, storage, and demand-side management systems under uncertainty[J]. IEEE Transactions on Sustainable Energy, 2011, 2(2): 194-202. [3] 张义志, 王小君, 和敬涵, 等. 考虑供热系统建模的综合能源系统最优能流计算方法[J]. 电工技术学报, 2019, 34(3): 562-570. Zhang Yizhi, Wang Xiaojun, He Jinghan, et al.Optimal energy flow calculation method of integrated energy system considering thermal system modeling[J]. Transactions of China Electrotechnical Society, 2019, 34(3): 562-570. [4] 孙玉树, 张国伟, 唐西胜, 等. 风电功率波动平抑下的MPC双储能控制策略研究[J]. 电工技术学报, 2019, 34(3): 571-578. Sun Yushu, Zhang Guowei, Tang Xisheng, et al.Research on MPC and dual energy storage control strategies with wind power fluctuation mitigation[J]. Transactions of China Electrotechnical Society, 2019, 34(3): 571-578. [5] Hemmati R, Shafie-Khah M, Catalao J P S. Three-level hybrid energy storage planning under uncertainty[J]. IEEE Transactions on Industrial Electronics, 2018, 66(3): 2174-2184. [6] 付菊霞, 陈洁, 滕扬新, 等. 基于集合经验模态分解的风电混合储能系统能量管理协调控制策略[J]. 电工技术学报, 2019, 34(10): 2038-2046. Fu Juxia, Chen Jie, Teng Yangxin, et al.Energy management coordination control strategy for wind power hybrid energy storage system based on EEMD[J]. Transactions of China Electrotechnical Society, 2019, 34(10): 2038-2046. [7] 李亚楠, 王倩, 宋文峰, 等. 混合储能系统平滑风电出力的变分模态分解-模糊控制策略[J]. 电力系统保护与控制, 2019, 47(7): 58-65. Li Yanan, Wang Qian, Song Wenfeng, et al.Variational mode decomposition and fuzzy control strategy of hybrid energy storage for smoothing wind power outputs[J]. Power System Protection and Control, 2019, 47(7): 58-65. [8] Hemmati R, Saboori H.Emergence of hybrid energy storage systems in renewable energy and transport applications - a review[J]. Renewable and Sustainable Energy Reviews, 2016, 65: 11-23. [9] 樊飞龙, 邰能灵, 范春菊, 等. 基于虚拟电池模型的DCHP系统全周期功率波动平抑策略[J]. 电力系统自动化, 2018, 42(16): 133-140. Fan Feilong, Tai Nengling, Fan Chunju, et al.Complete-period power fluctuation suppressing strategy for DCHP system based on virtual battery model[J]. Automation of Electric Power Systems, 2018, 42(16): 133-140. [10] 孙玉树, 唐西胜, 孙晓哲, 等. 基于MPC-HHT的多类型储能协调控制策略研究[J]. 中国电机工程学报, 2018, 38(9): 2580-2588. Sun Yushu, Tang Xisheng, Sun Xiaozhe, et al.Research on multi-type energy storage coordination control strategy based on MPC-HHT[J]. Proceedings of the CSEE, 2018, 38(9): 2580-2588. [11] 王成山, 刘梦璇, 陆宁. 采用居民温控负荷控制的微网联络线功率波动平滑方法[J]. 中国电机工程学报, 2012, 32(25): 36-43. Wang Chengshan, Liu Mengxuan, Lu Ning.A tie-line power smoothing method for microgrid using residential thermostatically-controlled loads[J]. Proceedings of the CSEE, 2012, 32(25): 36-43. [12] Palensky P, Dietrich D.Demand side management: demand response, intelligent energy systems, and smart loads[J]. IEEE Transactions on Industrial Informatics, 2011, 7(3): 381-388. [13] 宁佳, 汤奕, 高丙团. 基于需求响应潜力时变性的风火荷协同控制方法[J]. 电工技术学报, 2019, 34(8): 1728-1738. Ning Jia, Tang Yi, Gao Bingtuan.Coordinated control method of wind farm-AGC unit-load based on time-varying characteristics of demand response potential[J]. Transactions of China Electrotechnical Society, 2019, 34(8): 1728-1738. [14] 刘辉, 刘强, 张立, 等. 考虑需求侧协同响应的热电联供微网多目标规划[J]. 电力系统保护与控制, 2019, 47(5): 43-51. Liu Hui, Liu Qiang, Zhang Li, et al.Multi-objective planning for combined heat and power microgrid considering demand side cooperative response[J]. Power System Protection and Control, 2019, 47(5): 43-51. [15] 彭政, 崔雪, 王恒, 等. 考虑储能和需求侧响应的微网光伏消纳能力研究[J]. 电力系统保护与控制, 2017, 45(22): 63-69. Peng Zheng, Cui Xue, Wang Heng, et al.Research on the accommodation of photovoltaic power considering storage system and demand response in microgrid[J]. Power System Protection and Control, 2017, 45(22): 63-69. [16] Baeten B, Rogiers F, Helsen L.Reduction of heat pump induced peak electricity use and required generation capacity through thermal energy storage and demand response[J]. Applied Energy, 2017, 195: 184-195. [17] 戴世刚, 黄文焘, 邰能灵, 等. 基于蓄热热泵群灵活控制的电热微网联络线功率平滑策略[J]. 电网技术, 2019, 43(5): 1726-1734. Dai Shigang, Huang Wentao, Tai Nengling, et al.A fluctuation suppression strategy of tie-line power based on flexible control of heat pump with water tanks in combined heat and power microgrid[J]. Power System Technology, 2019, 43(5): 1726-1734. [18] Buber T, Roon S V, Gruber A, et al.Demand response potential of electrical heat pumps and electric storage heaters[C]//Conference of the IEEE Industrial Electronics Society, Vienna, Austria, 2014: 8028-8032. [19] 施金晓, 黄文焘, 邰能灵, 等. 电-热联合微网中分布式可再生能源功率波动平抑策略[J]. 中国电机工程学报, 2018, 38(2): 537-546, 684. Shi Jinxiao, Huang Wentao, Tai Nengling, et al.A strategy to suppress fluctuation of distributed renewable energy in microgrids with combined heat and power system[J]. Proceedings of the CSEE, 2018, 38(2): 537-546, 684. [20] Wang Dan, Ge Shaoyun, Jia Hongjie, et al.A demand response and battery storage coordination algorithm for providing microgrid tie-line smoothing services[J]. IEEE Transactions on Sustainable Energy, 2014, 5(2): 476-486. [21] 何雄峰, 李先允, 谈益珲, 等. 微型燃气轮机发电系统LVRT特性分析研究[J]. 电气技术, 2016, 17(6): 18-24. He Xiongfeng, Li Xianyun, Tan Yihui, et al.Performance analysis and research on microturbine generation system with LVRT[J]. Electrical Engineering, 2016, 17(6): 18-24. [22] Rajendran R.Gas turbine coatings—an overview[J]. Engineering Failure Analysis, 2012, 26: 355-369. [23] 周念成, 邓浩, 王强钢, 等. 光伏与微型燃气轮机混合微网能量管理研究[J]. 电工技术学报, 2012, 27(1): 74-84. Zhou Niancheng, Deng Hao, Wang Qianggang, et al.Energy management strategy of PV and micro-turbine hybrid micro-grid[J]. Transactions of China Electrotechnical Society, 2012, 27(1): 74-84. [24] Comodi G, Renzi M, Cioccolanti L, et al.Hybrid system with micro gas turbine and PV (photovoltaic) plant: guidelines for sizing and management strategies[J]. Energy, 2015, 89: 226-235. [25] 董皎皎, 高峰, 管晓宏. 平抑风电场随机波动的风-水-燃气系统优化设计[J]. 中国电机工程学报, 2017, 37(10): 2878-2886. Dong Jiaojiao, Gao Feng, Guan Xiaohong.Optimal design of wind-hydro-gas system for stochastic power fluctuation smoothing in wind farms[J]. Proceedings of the CSEE, 2017, 37(10): 2878-2886. [26] 李佳. 独立微电网热电联产优化调度的研究[D]. 呼和浩特: 内蒙古大学, 2017. |
|
|
|