|
|
Global Sensitivity Analysis for Regional Integrated Electricity and Gas System Based on Sparse Polynomial Chaos Expansion |
Hu Xiaoyun, Zhao Xia, Feng Xinxin |
State Key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing University Chongqing 400044 China |
|
|
Abstract There are plenty of uncertainties in the integrated electricity and gas system (IEGS). Accurately assessing the impact of these uncertainties on the system is an important part of the IEGS planning and operation. In this paper, the regional IEGS is taken as the research object. Considering the uncertainties of electricity/gas loads, photovoltaic power supply and gas pipelines parameters, a global sensitivity analysis method based on Sobol′ method and sparse polynomial chaos expansion (sPCE) is proposed. The regional IEGS composed of the IEEE 13 power distribution network and an 11-node gas distribution network is used to verify the correctness and effectiveness of the proposed method. The simulation results show that the global sensitivity indexes can quantify the influence of various uncertain variables and their interactions on the operation of the integrated system, which help reveal the complex relationship between the operation state of the integrated system and various uncertain factors. The simulation results also demonstrate the significant influence of the correlations between the uncertain variables and the uncertainties of gas pipelines parameters on the global sensitivity analysis.
|
Received: 14 June 2019
|
|
|
|
|
[1] 余晓丹, 徐宪东, 陈硕翼, 等. 综合能源系统与能源互联网简述[J]. 电工技术学报, 2016, 31(1): 1-13. Yu Xiaodan, Xu Xiandong, Chen Shuoyi, et al.A brief review to integrated energy system and energy internet[J]. Transactions of China Electrotechnical Society, 2016, 31(1): 1-13. [2] 罗毅, 邵周策, 张磊, 等. 考虑风电不确定性和气网运行约束的鲁棒经济调度和备用配置[J]. 电工技术学报, 2018, 33(11): 2456-2467. Luo Yi, Shao Zhouce, Zhang Lei, et al.Robust economic dispatch and reserve configuration considering wind uncertainty and gas network constraints[J]. Transactions of China Electrotechnical Society, 2018, 33(11): 2456-2467. [3] 赵霞, 杨仑, 瞿小斌, 等. 电-气综合能源系统能流计算的改进方法[J]. 电工技术学报, 2018, 33(3): 467-477. Zhao Xia, Yang Lun, Qu Xiaobin, et al.An improved energy flow calculation method for integrated electricity and natural gas system[J]. Transactions of China Electrotechnical Society, 2018, 33(3): 467-477. [4] 韩佶, 苗世洪, 李超, 等. 计及相关性的电-气-热综合能源系统概率最优能量流[J]. 电工技术学报, 2019, 34(5): 1055-1067. Han Ji, Miao Shihong, Li Chao, et al.Probabilistic optimal energy flow of electricity-gas-heat integrated energy system considering correlation[J]. Transactions of China Electrotechnical Society, 2019, 34(5): 1055-1067. [5] 陈胜, 卫志农, 孙国强, 等. 电-气混联综合能源系统概率能量流分析[J]. 中国电机工程学报, 2015, 35(24): 6331-6340. Chen Sheng, Wei Zhinong, Sun Guoqiang, et al.Probabilistic energy flow analysis in integrated electricity and natural-gas energy systems[J]. Proceedings of the CSEE, 2015, 35(24): 6331-6340. [6] Yang Lun, Zhao Xia, Hu Xiaoyun, et al.Probabilistic power and gas flow analysis for electricity-gas coupled networks considering uncertainties in pipeline parameters[C]//2017 IEEE Conference on Energy Internet and Energy System Integration (EI2), Beijing, 2017: 1-6. [7] Hu Yuan, Lian Haoran, Bie Zhaohong, et al.Unified probabilistic gas and power flow[J]. Journal of Modern Power Systems and Clean Energy, 2017, 5(3): 400-411. [8] Qiao Zheng, Huang Shangyuan, Li Rui, et al.An interval gas flow analysis in natural gas and electricity coupled networks considering the uncertainty of wind power[J]. Applied Energy, 2017, 201: 343-353. [9] 赵霞, 胡潇云, 杨仑, 等. 考虑参数不确定性的区域电-气联合系统的概率-模糊能流评估[J]. 电力自动化设备, 2019, 39(2): 135-142. Zhao Xia, Hu Xiaoyun, Yang Lun, et al.Probabilistic-possibilistic energy flow evaluation of regional electricity-gas system considering parameter uncertainties[J]. Eletric Power Automation Equipment, 2019, 39(2): 135-142. [10] 孙国强, 陈霜, 卫志农, 等. 计及相关性的电—气互联系统概率最优潮流[J]. 电力系统自动化, 2015, 39(21): 11-17. Sun Guoqiang, Chen Shuang, Wei Zhinong, et al.Probabilistic optimal power flow of combined natural gas and electric system considering correlation[J]. Automation of Electric Power Systems, 2015, 39(21): 11-17. [11] Chaudry M, Wu J, Jenkins N.A sequential Monte Carlo model of the combined GB gas and electricity network[J]. Energy Policy, 2013, 62: 473-483. [12] 余娟, 马梦楠, 郭林, 等. 含电转气的电-气互联系统可靠性评估[J]. 中国电机工程学报, 2018, 38(3): 708-715. Yu Juan, Ma Mengnan, Guo Lin, et al.Reliability evaluation of integrated electrical and natural-gas system with power-to-gas[J]. Proceedings of the CSEE, 2018, 38(3): 708-715. [13] Chen Juanwei, Yu Tao, Xu Yue, et al.Fast analytical method for reliability evaluation of electricity-gas integrated energy system considering dispatch strategies[J]. Applied Energy, 2019, 242: 260-272. [14] 骆柏锋, 穆云飞, 赵波, 等. 基于统一潮流模型的电-气耦合综合能源系统静态灵敏度分析[J]. 电力系统自动化, 2018, 42(13): 29-35. Luo Bofeng, Mu Yunfei, Zhao Bo, et al.State sensitivity analysis of integrated electricity and gas system based on unified power flow model[J]. Automation of Electric Power Systems, 2018, 42(13): 29-35. [15] 秦佳倩, 马瑞. 电-气耦合系统概率Pareto最大负荷裕度及灵敏度分析[J]. 电网技术, 2019, 43(1): 58-65. Qin Jiaqian, Ma Rui.Probability Pareto maximum load margin and sensitivity analysis for electricity-gas coupling system[J]. Power System Technology, 2019, 43(1): 58-65. [16] Sobol' I M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates[J]. Mathematics and Computers in Simulation, 2001, 55: 271-280. [17] Ni F, Nijhuis M, Nguyen P H, et al.Variance-based global sensitivity analysis for power systems[J]. IEEE Transactions on Power Systems, 2018, 33(2): 1670-1682. [18] 何琨, 严正, 徐潇源, 等. 基于Sobol'法的孤岛微电网潮流全局灵敏度分析[J]. 电力系统自动化, 2018, 42(14): 99-106. He Kun, Yan Zheng, Xu Xiaoyun, et al.Sobol' method based global sensitivity analysis of power flow in inlanded microgrid[J]. Automation of Electric Power Systems, 2018, 42(14): 99-106. [19] Xu Xiaoyuan, Yan Zheng, Shahidehpour M, et al.Power system voltage stability evaluation considering renewable energy with correlated variabilities[J]. IEEE Transactions on Power Systems, 2018, 33(3): 3236-3245. [20] Hasan, Nazmul K, Preece R. Influence of stochastic dependence on small-disturbance stability and ranking uncertainties[J]. IEEE Transactions on Power Systems, 2017, 33(3): 3227-3235. [21] 孙鑫, 王博, 陈金富, 等. 基于稀疏多项式混沌展开的可用输电能力不确定性量化分析[J]. 中国电机工程学报, 2019, 39(10): 1-10. Sun Xin, Wang Bo, Chen Jinfu, et al.Sparse polynomial chaos expansion based uncertainty quantification for available transfer capability[J]. Proceedings of the CSEE, 2019, 39(10): 1-10. [22] 宋梦, 于继来, 李碧君, 等. HDMR在电网潮流概率评估与调控中的应用[J]. 电网技术, 2014, 38(6): 1585-1592. Song Meng, Yu Jilai, Li Bijun, et al.Application of high dimensional model representation in probability assessment and regulation of power flow[J]. Power System Technology, 2014, 38(6): 1585-1592. [23] 王伟亮, 王丹, 贾宏杰, 等. 考虑天然气网络状态的电力-天然气区域综合能源系统稳态分析[J]. 中国电机工程学报, 2017, 37(5): 1293-1305. Wang Weiliang, Wang Dan, Jia Hongjie, et al.Steady state analysis of electricity-gas regional integrated energy system with consideration of NGS network status[J]. Proceedings of the CSEE, 37(5): 1293-1305. [24] Sun Xin, Tu Qingrui, Chen Jinfu.Probabilistic load flow calculation based on sparse polynomial chaos expansion[J]. IET Generation, Transmission & Distribution, 2018, 11(12): 2735-2744. [25] Hansen C W, Debs A S.Power-system state estimation using three-phase models[J]. IEEE Transactions on Power System, 1995, 10(2): 818-824. [26] Zeng Qing, Fang Jiakun, Li Jinghua, et al.Steady-state analysis of the integrated natural gas and electric power system with bi-directional energy conversion[J]. Applied Energy, 2016, 184: 1483-1492. [27] Peng Sui, Tang Junjie, Li Wenyuan.Probabilistic power flow for AC/VSC-MTDC hybrid grids considering rank correlation among diverse uncertainty sources[J]. IEEE Transactions on Power Systems, 2016, 32(5): 4035-4044. [28] IEEE PES AMPS DSAS. Test feeder working group [EB/OL].http://sites.ieee.org/pes-testfeeders/resources/. [29] Electric power research institute. Simulation tool -OpenDSS[EB/OL].http://smartgrid.epri.com/SimulationTool.aspx [30] 任洲洋. 光伏时空概率模型及其在电力系统概率分析中的应用[D]. 重庆: 重庆大学, 2014. [31] Abeysekera M, Wu J, Jenkins N, et al.Steady state analysis of gas networks with distributed injection of alternative gas[J]. Applied Energy, 2016, 164: 991-1002. |
|
|
|