|
|
Short-Term Complementary Operation of Hydro-Photovoltaic Integrated System Considering Power Generation and Output Fluctuation |
Zhu Yanmei1,2, Chen Shijun1,2,3, Ma Guangwen1,2, Han Xiaoyan4, Wang Liang4 |
1. College of Water Resource and Hydropower Sichuan University Chengdu 610065 China 2. State Key Laboratory of Hydraulics and Mountain River Engineering Sichuan University Chengdu 610065 China 3. Business School Sichuan University Chengdu 610065 China 4. State Grid Sichuan Electric Power Company Chengdu 610041 China |
|
|
Abstract Complementary operation of hydro-photovoltaic(PV) is of great significance to solve the problem of PV grid connection and consumption. In this paper, the PV output fluctuation was systematically divided into three levels: inherent, random and intermittent fluctuation. And the mechanism of hydro-PV complementarity was revealed from two aspects of improving system efficiency for the first time. Secondly, a dual-objective scheduling model that considered both power generation and output fluctuation was established, which was solved by a nested optimization method. Combined with the output characteristics of PV power generation, the measurement of output fluctuation was improved, and the staged fluctuation control strategy was proposed to adapt to the access of large-scale PV power generation. Finally, taking the cascade hydropower stations in Xiaojinchuan River Basin and its surrounding PV power stations in Sichuan Province of China as an example, the model was tested. The results show that under the premise of ensuring the power generation, both the overall and the staged fluctuation control strategies can adjust the output fluctuation well under the condition of access of small-scale PV power generation. However, with the increase of the scale of PV power, the latter shows a significant advantage, which verifies the rationality of staged fluctuation control strategy.
|
Received: 28 November 2019
|
|
|
|
|
[1] Zhu Yanmei, Chen Shijun, Huang Weibin, et al.Complementary operational research for a hydro-wind-solar hybrid power system on the upper Jinsha River[J]. Journal of Renewable and Sustainable Energy, 2018, 10(4): 043309. [2] 王静, 徐箭, 廖思阳, 等. 计及新能源出力不确定性的电气综合能源系统协同优化[J]. 电力系统自动化, 2019, 43(15): 2-15. Wang Jing, Xu Jian, Liao Siyang, et al.Coordinated optimization of integrated electricity-gas energy system considering uncertainty of renewable energy output[J]. Automation of Electric Power Systems, 2019, 43(15): 2-15. [3] 颜宁, 潘霄, 张明理, 等. 基于多时间尺度的微电网群阶梯控制方法研究[J]. 电机与控制学报, 2019, 23(9): 26-34. Yan Ning, Pan Xiao, Zhang Mingli, et al.Step control method of multi-microgrids based on different time levels[J]. Electric Machines and Control, 2019, 23(9): 26-34. [4] 易文飞, 张艺伟, 曾博, 等. 多形态激励型需求侧响应协同平衡可再生能源波动的鲁棒优化配置[J]. 电工技术学报, 2018, 33(23): 5541-5554. Yi Wenfei, Zhang Yiwei, Zeng Bo, et al.Robust optimization allocation for multi-type incentive-based demand response collaboration to balance renewable energy fluctuations[J]. Transactions of China Electrotechnical Society, 2018, 33(23): 5541-5554. [5] 王丰, 孔鹏举, Lee F C, 等. 基于分布式最大功率跟踪的光伏系统输出特性分析[J]. 电工技术学报, 2015, 30(24): 127-134. Wang Feng, Kong Pengju, Lee F C, et al.Output characteristic analysis of distributed maximum power point tracking PV system[J]. Transactions of China Electrotechnical Society, 2015, 30(24): 127-134. [6] 叶林, 屈晓旭, 么艳香, 等. 风光水多能互补发电系统日内时间尺度运行特性分析[J]. 电力系统自动化, 2018, 42(4): 158-164. Ye Lin, Qu Xiaoxu, Yao Yanxiang, et al.Analysis on intraday operation characteristics of hybrid wind-solar-hydro power generation system[J]. Automation of Electric Power Systems, 2018, 42(4): 158-164. [7] 韩柳, 庄博, 吴耀武, 等. 风光水火联合运行电网的电源出力特性及相关性研究[J]. 电力系统保护与控制, 2016, 44(19): 91-98. Han Liu, Zhuang Bo, Wu Yaowu, et al.Power source's output characteristics and relevance in wind-solar-hydro-thermal power system[J]. Power System Protection and Control, 2016, 44(19): 91-98. [8] 钱梓锋, 李庚银, 安源, 等. 龙羊峡水光互补的日优化调度研究[J]. 电网与清洁能源, 2016, 32(4): 69-74. Qian Zifeng, Li Gengyin, An Yuan, et al.Research on the optimization of daily operation of Longyangxia hydro-photovoltaic power system[J]. Advances of Power System & Hydroelectric Engineering, 2016, 32(4): 69-74. [9] An Yuan, Fang Wei, Ming Bo, et al.Theories and methodology of complementary hydro/photovoltaic operation: applications to short-term scheduling[J]. Journal of Renewable and Sustainable Energy, 2015, 7(6): 063133. [10] 安源, 方伟, 黄强, 等. 水-光互补协调运行的理论与方法初探[J]. 太阳能学报, 2016, 37(8): 1985-1992. An Yuan, Fang Wei, Huang Qiang, et al.Preliminary research of theory and method of hydro/solar complementary operation[J]. Acta Energiae Solaris Sinica, 2016, 37(8): 1985-1992. [11] 段翩, 朱建全, 刘明波. 基于双层模糊机会约束规划的虚拟电厂优化调度[J]. 电工技术学报, 2016, 31(9): 58-67. Duan Pian, Zhu Jianquan, Liu Mingbo.Optimal dispatch of virtual power plant based on bi-level fuzzy chance constrained programming[J]. Transactions of China Electrotechnical Society, 2016, 31(9): 58-67. [12] 颜宁, 潘霄, 张明理, 等. 基于复合储能的多互联微电网日内调度研究[J]. 电工技术学报, 2018, 33(增刊2): 577-585. Yan Ning, Pan Xiao, Zhang Mingli, et al.Research on intra-day dispatch of multi-connected microgrids based on hybrid energy storage[J]. Transactions of China Electrotechnical Society, 2018, 33(S2): 577-585. [13] 朱晔, 兰贞波, 隗震, 等. 考虑碳排放成本的风光储多能互补系统优化运行研究[J]. 电力系统保护与控制, 2019, 47(10): 127-133. Zhu Ye, Lan Zhenbo, Wei Zhen, et al.Research on optimal operation of wind-PV-ES complementary system considering carbon emission cost[J]. Power System Protection and Control, 2019, 47(10): 127-133. [14] 刘德顺, 董海鹰, 汪宁渤, 等. 基于多时空尺度协调的多源互补发电场群优化调度[J]. 电力系统保护与控制, 2019, 47(12): 73-83. Liu Deshun, Dong Haiying, Wang Ningbo, et al.Optimization scheduling for multi-source complementary power plants group based on multiple temporal and spatial scales coordination[J]. Power System Protection and Control, 2019, 47(12): 73-83. [15] 赵波, 汪湘晋, 张雪松, 等. 考虑需求侧响应及不确定性的微电网双层优化配置方法[J]. 电工技术学报, 2018, 33(14): 3284-3295. Zhao Bo, Wang Xiangjin, Zhang Xuesong, et al.Two-layer method of microgrid optimal sizing considering demand-side response and uncertainties[J]. Transactions of China Electrotechnical Society, 2018, 33(14): 3284-3295. [16] 李建林, 郭斌琪, 牛萌, 等. 风光储系统储能容量优化配置策略[J]. 电工技术学报, 2018, 33(6): 1189-1196. Li Jianlin, Guo Binqi, Niu Meng, et al.Optimal configuration strategy of energy storage capacity in wind/PV/storage hybrid system[J]. Transactions of China Electrotechnical Society, 2018, 33(6): 1189-1196. [17] 白凯峰, 顾洁, 彭虹桥, 等. 融合风光出力场景生成的多能互补微网系统优化配置[J]. 电力系统自动化, 2018, 42(15): 133-141. Bai Kaifeng, Gu Jie, Peng Hongqiao, et al.Optimal allocation for multi-energy complementary microgrid based on scenario generation of wind power and photovoltaic output[J]. Automation of Electric Power Systems, 2018, 42(15): 133-141. [18] 陈柏翰, 冯伟, 孙凯, 等. 冷热电联供系统多元储能及孤岛运行优化调度方法[J]. 电工技术学报, 2019, 34(15): 3231-3243. Chen Pohan, Feng Wei, Sun Kai, et al.Multi-energy storage system and islanded optimal dispatch method of CCHP[J]. Transactions of China Electrotechnical Society, 2019, 34(15): 3231-3243. [19] 马伟, 王玮, 吴学智, 等. 平抑光伏并网功率波动的混合储能系统优化调度策略[J]. 电力系统自动化, 2019, 43(3): 58-69. Ma Wei, Wang Wei, Wu Xuezhi, et al.Optimal dispatching strategy of hybrid energy storage system for smoothing power fluctuation caused by grid-connected photovoltaic[J]. Automation of Electric Power Systems, 2019, 43(3): 58-69. [20] 刘娟楠, 王守国, 王敏. 水光互补系统对龙羊峡水电站综合运用影响分析[J]. 电网与清洁能源, 2015, 31(9): 83-87. Liu Juannan, Wang Shouguo, Wang Min.Influence analysis of hydro-photovoltaic power complementary system of Longyangxia hydro-power station[J]. Advances of Power System & Hydroelectric Engineering, 2015, 31(9): 83-87. [21] 张娉, 杨婷. 龙羊峡水光互补运行机制的研究[J]. 华北水利水电大学学报: 自然科学版, 2015, 36(3): 76-81. Zhang Ping, Yang Ting.Research on Longyangxia hydro-photovoltaic complementary operation mecha-nism[J]. Journal of North China University of Water Resources and Electric Power: Natural Science, 2015, 36(3): 76-81. [22] Zhang Xinshuo, Ma Guangwen, Huang Weibin, et al.Short-term optimal operation of a wind-PV-hydro complementary installation: Yalong River, Sichuan Province, China[J]. Energies, 2018, 11(4): 868. [23] Wang Xianxun, Edgar V, Jordan K, et al.Integrating wind, photovoltaic, and large hydropower during the reservoir refilling period[J]. Energy Conversion and Management, 2019, 198: 111778. [24] Wang Xuebin, Chang Jianxia, Meng Xuejiao, et al.Short-term hydro-thermal-wind-photovoltaic complementary operation of interconnected power systems[J]. Applied Energy, 2018, 229: 945-962. [25] Ming Bo, Liu Pa, Guo Shenglian, et al.Hydropower reservoir reoperation to adapt to large-scale photovoltaic power generation[J]. Energy, 2019, 179: 268-279. [26] Zhang Qianwen, Wang Xiuli, Yang Tingtian, et al.Research on scheduling optimization for an integrated system of wind-photovoltaic-hydro-pumped storage[J]. The Journal of Engineering, 2017, 2017(13): 1210-1214. [27] 车泉辉, 娄素华, 吴耀武, 等. 计及条件风险价值的含储热光热电站与风电电力系统经济调度[J]. 电工技术学报, 2019, 34(10): 2047-2055. Che Quanhui, Lou Suhua, Wu Yaowu, et al.Economic dispatching for power system of concentrated solar power plant with thermal energy storage and wind power considering conditional value-at-risk[J]. Transactions of China Electrotechnical Society, 2019, 34(10): 2047-2055. [28] Wang Xianxun, Mei Yadong, Cai Hao, et al.A new fluctuation index: characteristics and application to hydro-wind systems[J]. Energies, 2016, 9(2): 114. [29] 毛文桦. 光伏电站有功功率特性分析及相关软件开发[D]. 武汉: 华中科技大学, 2014. [30] 尚松浩. 水资源系统分析方法及应用[M]. 北京: 清华大学出版社, 2006. |
|
|
|