|
|
Key Technologies and Research Prospects for Cascaded Hydro-Photovoltaic-Pumped Storage Hybrid Power Generation System |
Han Xiaoyan1, Ding Lijie2, Chen Gang2, Liu Junyong3, Lin Jin4 |
1. State Grid Sichuan Electric Power Company Chengdu 610041 China 2. State Grid Sichuan Electric Power Research Institute Chengdu 610041 China 3. College of Electrical and Engineering Sichuan University Chengdu 610065 China 4. Department of Electrical Engineering Tsinghua University Beijing 100084 China |
|
|
Abstract The cascaded hydro-photovoltaic-pumped storage hybrid power generation system, combining cascaded small hydropower, photovoltaic and pumped storage, is one of the most important means of multi-energy complementarity in the future. In this paper, the recent advances of renewable energy hybrid power generation system in recent years was summarized, and the complementary operation mode of cascaded hydro-photovoltaic-pumped storage was analyzed. Then, the scientific issues and key technologies were analyzed from three aspects: medium and long-term electricity complementary, short-term dispatching plan complementary and real-time control complementary. On this basis, the research framework was proposed from four aspects: allocation and optimization of power capacity, joint operation control and intelligent dispatching of hybrid power system, development of variable speed constant frequency pumped-storage equipment, and application demonstration, which provides valuable research ideas for the cascaded hydro-photovoltaic-pumped storage hybrid power generation system.
|
Received: 23 December 2019
|
|
|
|
|
[1] 徐玉杰, 陈海生, 刘佳, 等. 风光互补的压缩空气储能与发电一体化系统特性分析[J]. 中国电机工程学报, 2012, 32(20): 88-95, 144. Xu Yujie, Chen Haisheng, Liu Jia, et al.Performance analysis on an integrated system of compressed air energy storage and electricity production with wind-solar complementary method[J]. Proceedings of the CSEE, 2012, 32(20): 88-95, 144. [2] REN21《Renewables Global Status Report》[R]. http://cngascn.com/public/uploads/file/20190625/20190625151853_74253.pdf. [3] International Energy Agency.Renewables 2018—Market analysis and forecast from 2018 to 2023[R]. Paris: International Energy Agency, 2018. [4] 丁明, 王伟胜, 王秀丽, 等. 大规模光伏发电对电力系统影响综述[J]. 中国电机工程学报, 2014, 34(1): 1-14. Ding Ming, Wang Weisheng, Wang Xiuli, et al.A review on the effect of large-scale PV generation on power systems[J]. Proceedings of the CSEE, 2014, 34(1): 1-14. [5] 陈国平, 李明节, 许涛, 等. 关于新能源发展的技术瓶颈研究[J]. 中国电机工程学报, 2017, 37(1): 25-32. Chen Guoping, Li Mingjie, Xu Tao, et al.Study on technical bottleneck of new energy development[J]. Proceedings of the CSEE, 2017, 37(1): 25-32. [6] 国家发展和改革委员会, 国家能源局. 电力发展“十三五”规划(2016-2020年)[R]. 2016. [7] 徐林, 阮新波, 张步涵, 等. 风光蓄互补发电系统容量的改进优化配置方法[J]. 中国电机工程学报, 2012, 32(25): 88-98. Xu Lin, Ruan Xinbo, Zhang Buhan, et al.An Improved optimal sizing method for wind-solar-battery hybrid power system[J]. Proceedings of the CSEE, 2012, 32(25): 88-98. [8] 车泉辉, 娄素华, 吴耀武, 等. 计及条件风险价值的含储热光热电站与风电电力系统经济调度[J]. 电工技术学报, 2019, 34(10): 2047-2055. Che Quanhui, Lou Suhua, Wu Yaowu, et al.Economic dispatching for power system of concentrated solar power plant with thermal energy storage and wind power considering conditional value-at-risk[J]. Transactions of China Electrotechnical Society, 2019, 34(10): 2047-2055. [9] 刘振亚, 张启平, 董存, 等. 通过特高压直流实现大型能源基地风、光、火电力大规模高效率安全外送研究[J]. 中国电机工程学报, 2014, 34(16): 2513-2522. Liu Zhenya, Zhang Qiping, Dong Cun, et al.Efficient and security transmission of wind, photovoltaic and thermal power of large-scale energy resource bases through UHVDC projects[J]. Proceedings of the CSEE, 2014, 34(16): 2513-2522. [10] 丁明, 王波, 赵波, 等. 独立风光柴储微网系统容量优化配置[J]. 电网技术, 2013, 37(3): 575-581. Ding Ming, Wang Bo, Zhao Bo, et al.Configuration optimization of capacity of standalone PV-wind-diesel-battery hybrid microgrid[J]. Power System Technology, 2013, 37(3): 575-581. [11] 叶林, 屈晓旭, 么艳香, 等. 风光水多能互补发电系统日内时间尺度运行特性分析[J]. 电力系统自动化, 2018, 42(4): 1-7. Ye Lin, Qu Xiaoxu, Yao Yanxiang, et al.Analysis on intraday operation characteristics of hybrid wind-solar-hydro power generation system[J]. Automation of Electric Power Systems, 2018, 42(4): 1-7. [12] 侯文庭, 韦化. 考虑核电可调度性的风-光-核-水-火多源协调短期优化调度[J]. 电工技术学报, 2018, 33(12): 2873-2882. Hou Wenting, Wei Hua.A multi-source coordinated short-term dispatch model considering the dispatchability of nuclear power plants[J]. Transactions of China Electrotechnical Society, 2018, 33(12): 2873-2882. [13] 陈柏翰, 冯伟, 孙凯, 等. 冷热电联供系统多元储能及孤岛运行优化调度方法[J]. 电工技术学报, 2019, 34(15): 3231-3243. Chen Pohan, Feng Wei, Sun Kai, et al.Multi-energy storage system and islanded optimal dispatch method of CCHP[J]. Transactions of China Electrotechnical Society, 2019, 34(15): 3231-3243. [14] 马伟, 王玮, 吴学智, 等. 平抑光伏并网功率波动的混合储能系统优化调度策略[J]. 电力系统自动化, 2019, 43(3): 58-69. Ma Wei, Wang Wei, Wu Xuezhi, et al.Optimal dispatching strategy of hybrid energy storage system for smoothing power fluctuation caused by grid-connected photovoltaic[J]. Automation of Electric Power Systems, 2019, 43(3): 58-69. [15] 甘伟, 郭剑波, 艾小猛, 等. 应用于风电场出力平滑的多尺度多指标储能配置[J]. 电力系统自动化, 2019, 43(9): 92-99. Gan Wei, Guo Jianbo, Ai Xiaomeng, et al.Multi-scale multi-index sizing of energy storage applied to fluctuation mitigation of wind farm[J]. Automation of Electric Power Systems, 2019, 43(9): 92-99. [16] 王灿斌, 王家陈. 基于小水电富集地区电网的调控难点分析及探讨[J]. 电工技术, 2019(20): 68-69. Wang Canbin, Wang Jiachen.Analysis and discussion on difficulties of power grid regulation in small hydropower enriched area[J]. Electrical Technology, 2019(20): 68-69. [17] Cheng Chuntian, Miao Shumin, Luo Bin, et al.Forecasting monthly energy production of small hydropower plants in ungauged basins using grey model and improved seasonal index[J]. Journal of Hydroinfomatics, 2017, 19(6): 993-1008. [18] 徐玉韬, 袁旭峰, 武晋辉, 等. 规模化小水电群功率快速控制系统及其在贵州电网中的应用[J]. 电子测量技术, 2019, 42(18): 8-13. Xu Yutao, Yuan Xufeng, Wu Jinhui, et al.Power rapid control system based on scaled small hydropower stations and it's application in Guizhou power grid[J]. Electronic Measurement Technology, 2019, 42(18): 8-13. [19] 中国抽水蓄能电站装机居世界第一六座电站同日开建[J]. 南方能源建设, 2017, 4(增刊1): 153. China's installed capacity of pumped storage power station ranks first in the world[J]. Southern Energy Construction, 2017, 4(S1):153. [20] 高苏杰. 抽水蓄能的责任[J]. 水电与抽水蓄能, 2015, 1(3): 1-6. Gao Sujie.The responsibility of pumped storage[J]. Hydropower and Pumped Storage, 2015, 1(3): 1-6. [21] Xu Xiao, Hu Weihao, Cao Di, et al.Optimized sizing of a standalone PV-wind-hydropower station with pumped-storage installation hybrid energy system[J]. Renewable Energy, 2020, 147: 1418-1431. [22] 荆朝霞, 胡荣兴, 袁灼新, 等. 含风/光/抽水蓄能并计及负荷响应的海岛微网优化配置[J]. 电力系统自动化, 2017, 41(1): 65-72, 116. Jing Zhaoxia, Hu Rongxing, Yuan Zhuoxin, et al.Capacity configuration optimization for island microgrid with wind/solar/pumped storage considering demand response[J]. Automation of Electric Power Systems, 2017, 41(1): 65-72, 116. [23] Al-Ghussain L, Taylan O, Baker D K.An investigation of optimum PV and wind energy system capacities for alternate short and long-term energy storage sizing methodologies[J]. International Journal of Energy Research, 2019, 43(1): 204-218. [24] Kittner N, Gheewala S H, Kammen D M.Energy return on investment (EROI) of mini-hydro and solar PV systems designed for a mini-grid[J]. Renewable Energy, 2016, 99: 410-419. [25] Silverio N M, Barros R M, Tiago Filho G L, et al. Use of floating PV plants for coordinated operation with hydropower plants: case study of the hydroelectric plants of the Sao Francisco River basin[J]. Energy Conversion & Management, 2018, 171(PT.1-1082): 339-349. [26] Deng Zhenchen, Xiao Jinyu, Zhang Shikun, et al.Economic feasibility of large-scale hydro-solar hybrid power including long distance transmission[J]. Global Energy Interconnection, 2019, 2(4): 290-299. [27] Zhang Qianwen.Research on scheduling optimization for an integrated system of wind-photovoltaic-hydro-pumped storage[J]. The Journal of Engineering, 2017, 2017(13): 1210-1214. [28] Howlader H O R, Sediqi M M, Ibrahimi A M, et al. Optimal thermal unit commitment for solving duck curve problem by introducing CSP, PSH and demand response[J]. IEEE Access, 2018, 6: 4834-4844. [29] 李建林, 郭斌琪, 牛萌, 等. 风光储系统储能容量优化配置策略[J]. 电工技术学报, 2018, 33(6): 1189-1196. Li Jianlin, Guo Binqi, Niu Meng, et al.Optimal configuration strategy of energy storage capacity in wind/PV/storage hybrid system[J]. Transactions of China Electrotechnical Society, 2018, 33(6): 1189-1196. [30] Zhang Yusheng, Ma Chao, Lian Jijian, et al.Optimal photovoltaic capacity of large-scale hydro-photovoltaic complementary systems considering electricity delivery demand and reservoir characteristics[J]. Energy Conversion and Management, 2019, 195: 597-608. [31] Apostolopoulou D, De Greve Z, McCulloch M. Robust optimisation for hydroelectric system operation under uncertainty[J]. IEEE Transactions on Power Systems, 2018, 33(3): 3337-3348. [32] Kanzumba K.Hybrid DG-PV with ground water pumped hydro storage for sustainable energy supply in arid areas[J]. Journal of Energy Storage, 2018, 18: 84-89. [33] 彭政, 崔雪, 王恒, 等. 考虑储能和需求侧响应的微网光伏消纳能力研究[J]. 电力系统保护与控制, 2017, 45(22): 63-69. Peng Zheng, Cui Xue, Wang Heng, et al.Research on the accommodation of photovoltaic power considering storage system and demand response in microgrid[J]. Power System Protection and Control, 2017, 45(22): 63-69. [34] Li Yanxue, Gao Weijun, Ruan Yingjun, et al.The performance investigation of increasing share of photovoltaic generation in the public grid with pump hydro storage dispatch system, a case study in Japan[J]. Energy, 2018, 164(1): 811-821. [35] 吴杰, 丁明, 张晶晶. 基于云模型和k-means聚类的风电场储能容量优化配置方法[J]. 电力系统自动化, 2018, 42(24): 67-76. Wu Jie, Ding Ming, Zhang Jingjing.Capacity configuration method of energy storage system for wind farm based on cloud model and k-means clustering[J]. Automation of Electric Power Systems, 2018, 42(24): 67-76. [36] 许志恒, 张勇军, 陈泽兴, 等. 考虑运行策略和投资主体利益的电转气容量双层优化配置[J]. 电力系统自动化, 2018, 42(13): 76-84. Xu Zhiheng, Zhang Yongjun, Chen Zexing, et al.Bi-level optimal capacity configuration for power to gas facilities considering operation strategy and investment subject benefit[J]. Automation of Electric Power Systems, 2018, 42(13): 76-84. [37] Feng Zhongkai, Niu Wenjing, Cheng Chuntian, et al.Optimization of hydropower system operation by uniform dynamic programming for dimensionality reduction[J]. Energy, 2017, 134: 718-730. [38] Chang Jianxia, Bai Tao, Huang Qiang, et al.Optimization of water resources utilization by PSO-GA[J]. Water Resources Management, 2013, 27(10): 3525-3540. [39] Guo Xuning, Hu Tiesong, Wu Conglin, et al.Multi-objective optimization of the proposed multi-reservoir operating policy using improved NSPSO[J]. Water Resources Management, 2013, 27(7): 2137-2153. [40] Guo Xuning, Hu Tiesong, Zhang Tao, et al. Bilevel model for multi-reservoir operating policy in inter-basin water transfer-supply project[J]. Journal of Hydrology, 2012, 424-425: 252-263. [41] Niu Wenjing, Feng Zhongkai, Cheng Chuntian, et al.A parallel multi-objective particle swarm optimization for cascade hydropower reservoir operation in southwest China[J]. Applied Soft Computing Journal, 2018, 70: 562-575. [42] Wang Xianxun, Edgar V, Xiao Weihua, et al.Clustering and dispatching hydro, wind, and photovoltaic power resources with multiobjective optimization of power generation fluctuations: a case study in southwestern China[J]. Energy, 2019, 189: 116250. [43] 张睿. 流域大规模梯级电站群协同发电优化调度研究[D]. 武汉: 华中科技大学, 2014. [44] Sachdev H S, Akella A K, Kumar N.Analysis and evaluation of small hydropower plants: a bibliographical survey[J]. Renewable and Sustainable Energy Reviews, 2015, 51: 1013-1022. [45] 赖昌伟, 黎静华, 陈博, 等. 光伏发电出力预测技术研究综述[J]. 电工技术学报, 2019, 34(6): 1201-1217. Lai Changwei, Li Jinghua, Chen Bo, et al.Review of photovoltaic power output prediction technology[J]. Transactions of China Electrotechnical Society, 2019, 34(6): 1201-1217. [46] 许伟, 肖湘宁. 基于模式转换的独立微电网实时运行控制[J]. 电工技术学报, 2019, 34(增刊1): 282-291. Xu Wei, Xiao Xiangning.Real-time operational control of stand-alone microgrid based on mode switch[J]. Transactions of China Electrotechnical Society, 2019, 34(S1): 282-291. [47] Furuya S, Fujiki S, Hioki T, et al.Development and achieved commercial operation experience of the world's first commissioned converter-fed variable-speed generator-motor for a pumped storage power plant[C]//Cigre Paper, Japan, 1992. [48] ALPIQ. Nant de Drance hydropower project. Dec. 18, 2015[R/OL]. http://www.alpiq.com/what-we-offer/our-assets/hydropower/hydropower-plant-projects/nant-de-drance.jsp. [49] 贾金生, 郝巨涛. 国外水电发展概况及对我国水电发展的启示(四)——瑞士水电发展及启示[J]. 中国水能及电气化, 2010(6): 3-7, 12. Jia Jinsheng, Hao Jutao.Introduction of overseas hydropower development and inspiration on hydropower development in China[J]. China Water Power & Electrification, 2010(6): 3-7, 12. [50] Kunz T.Business case results about potential upgrade of five EU pumped hydro storage plants to variable speed, 2015 eStorage project workshop[R]. 2016, Business case results about potential upgrade of five EU pumped hydro storage plants to variable speed, 2015 eStorage project workshop[R]. 2016, http://www.estorage-project.eu/documentlibrary. [51] 陈隆. 三河口水利枢纽抽水, 供水, 发电系统水工模型试验研究[D]. 西安: 西北农林科技大学, 2013. [52] Jiang Dong, Chen Jianan, Shen Zewei.Common mode emi reduction through PWM methods for three-phase motor controller[J]. CES Transactions on Electrical Machines and Systems, 2019, 3(2):133-142. [53] 郭磊磊, 金楠, 韩东许, 等. 背靠背永磁直驱风电变流器共模电压抑制方法[J]. 电机与控制学报, 2018, 22(6): 77-86, 95. Guo Leilei, Jin Nan, Han Dongxu, et al.Common-mode voltage suppression strategy for back-to-back permanent-magnet direct-drive wind power converters[J]. Electric Machines and Control, 2018, 22(6): 77-86, 95. [54] 万晓凤, 詹子录, 丁小华, 等. 基于虚拟同步发电机的多逆变器并联改进控制策略[J]. 电机与控制学报, 2020, 24(2): 118-127. Wan Xiaofeng, Zhan Zilu, Ding Xiaohua, et al.Improved control strategy of multi-inverter parallel based on virtual synchronous generator[J]. Electric Machines and Control, 2020, 24(2): 118-127. [55] 庞秀岚, 张伟. 水光互补技术研究及应用[J]. 水力发电学报, 2017, 36(7): 1-13. Pang Xiulan, Zhang Wei.Hydro-photovoltaic complementary technology research and application[J]. Journal of Hydroelectric Engineering, 2017, 36(7): 1-13. [56] 龚传利, 王英鑫, 陈小松, 等. 龙羊峡水光互补自动发电控制策略及应用[J]. 水电站机电技术, 2014, 37(3): 63-64, 114. Gong Chuanli, Wang Yingxin, Chen Xiaosong, et al.The automatic generation control strategy and application of Longyang Gorge hydropower compensation photovoltaic power[J]. Mechanical & Electrical Technique of Hydropower Station, 2014, 37(3): 63-64, 114. [57] 黄鹤, 秦岭, 魏道万. “水光多能互补”清洁能源创新发展管理[J]. 中国电力企业管理, 2018, 541(28): 52-55. Huang He, Qin Ling, Wei Daowan.“Hydro-photovoltaic multi-energy hybrid power” clean energy innovation and development management[J]. China Power Enterprise Management, 2018, 541(28): 52-55. [58] 陈希章. 建立基于多能互补的化工园区能源供应体系浅析(二)[J]. 化学工业, 2019, 37(3): 42-51. Chen Xizhang.Analysis of energy supply system in chemical industry park based on multi-energy complementarity[J]. Chemical Industry, 2019, 37(3): 42-51. [59] 贾明. 玉树建成我国最大规模水光互补微网电站[N]. 青海日报, 2012.01.01. [60] Papaefthymiou S V, Karamanou E G, Papathanassiou S A, et al.A wind-hydro-pumped storage station leading to high RES penetration in the autonomous island system of ikaria[J]. IEEE Transactions on Sustainable Energy, 2010, 1(3): 163-172. [61] Buil J M, Gil A.The role of hydro and future pumped storage plans in Spain[J]. Hydro Power & Dams, 2006, 13(3): 68-71. |
|
|
|