|
|
Power Decoupling Strategy in Virtual Synchronous Generator Based on Adaptive Reactive Power Compensation |
Jiang Jingya1, Wang Wei1, Wu Xuezhi1, Tang Fen1, Li Jinke2 |
1. National Active Distribution Network Technology Research Center Beijing Jiaotong University Beijing 100044 China 2. China Energy Engineering Group Jiangsu Power Design Institute Co. Ltd Nanjing 211102 China |
|
|
Abstract The virtual synchronous generator (VSG) may produce output power error due to the power coupling. To tackle this issue, a novel power decoupling strategy based on the adaptive reactive power compensation was proposed. The active-power loop and reactive-power loop were reconstructed in this paper. It is proposed that the power angle and inner electric potential of VSG could be characterized by the output current and the coupling problem could be characterized only by the d axis current. Furthermore, the decoupling strategy based on the reactive power compensation is proposed from the respective of suppressing the current error. Finally, the effectiveness of the strategy was verified by simulation and experiment results.
|
Received: 02 December 2019
|
|
|
|
|
[1] 任碧莹, 邱姣姣, 刘欢, 等. 基于虚拟同步发电机双机并联系统的参数自调节优化控制策略[J]. 电工技术学报, 2019, 34(1): 128-138. Ren Biying, Qiu Jiaojiao, Liu Huan, et al.Optimization control strategy of self-adjusting parameter based on dual-parallel virtual synchronous generators[J]. Transactions of China Electrotechnical Society, 2019, 34(1): 128-138. [2] 耿乙文, 田芳芳, 孙帅, 等. 一种基于虚拟同步发电机的电流谐波抑制方法[J]. 电工技术学报, 2018, 33(5): 1040-1050. Geng Yiwen, Tian Fangfang, Sun Shuai, et al.A method of current harmonics suppression based on VSG[J]. Transactions of China Electrotechnical Society, 2018, 33(5): 1040-1050. [3] 年珩, 教煐宗, 孙丹. 基于虚拟同步机的并网逆变器不平衡电压灵活补偿策略[J]. 电力系统自动化, 2019, 43(3): 123-129. Nian Heng, Jiao Yingzong, Sun Dan.Flexible compensation strategy of unbalanced voltage for grid-connected inverter based on virtual synchronous generator[J]. Automation of Electric Power Systems, 2019, 43(3): 123-129. [4] 繆惠宇, 梅飞, 张宸宇, 等. 基于虚拟阻抗的虚拟同步整流器三相不平衡控制策略[J]. 电工技术学报, 2019, 34(17): 3622-3630. Liao Huiyu, Mei Fei, Zhang Chenyu, et al.Three phase unbalanced control strategy for virtual synchronous rectifier based on virtual impedance[J]. Transactions of China Electrotechnical Society, 2019, 34(17): 3622-3630. [5] 陈文倩, 辛小南, 程志平. 基于虚拟同步发电机的光储并网发电控制技术[J]. 电工技术学报, 2018, 33(2): 538-545. Chen Wenqian, Xin Xiaonan, Cheng Zhiping.Control of grid-connected of photovoltaic system with storage based on virtual synchronous generator[J]. Transactions of China Electrotechnical Society, 2018, 33(2): 538-545. [6] 张海峥, 张兴, 李明, 等. 基于变步长功率跟踪的有功备用式PV-VSG控制策略[J]. 电力系统自动化 2019, 43(5): 92-100. Zhang Haizheng, Zhang Xing, Li Ming, et al.Control strategy of PV-VSG in active power reserve mode based on power tracking with variable step[J]. Automation of Electric Power Systems, 2019, 43(5): 92-100. [7] 高海力, 谭建成. 大型光储联合虚拟同步发电机技术综述[J]. 电气技术, 2019, 20(1): 1-4,9. Gao Haili, Tan Jiancheng.The overview of the vsg technology of grid connected large-scale PV-storage hybrid system[J]. Electrical Engineering, 2019, 20(1): 1-4, 9. [8] 王帅, 荆龙, 吴学智, 等. 统一电能质量调节器在新能源发电场的虚拟同步特性分析[J]. 电网技术, 2020, 44(1): 159-165. Wang Shuai, Jing Long, Wu Xuezhi, et al.Research on virtual synchronization characteristics of unified power quality conditioner in renewable energy farms[J]. Power System Technology, 2020, 44(1): 159-165. [9] Shao Tiancong, Jia Pengyu, Zheng Peiqi, et al.A robust power regulation controller to enhance dynamic performance of voltage source converters[J]. IEEE Transactions on Power Electronics, 2019, 34(12): 12407-12422. [10] 李明桓, 王跃, 徐宁一, 等. 基于带通阻尼功率反馈的虚拟同步发电机控制策略[J]. 电工技术学报, 2018, 33(10): 2176-2185. Li Minghuan, Wang Yue, Xu Ningyi, et al.Virtual synchronous generator control strategy based on bandpass damping power feedback[J]. Transactions of China Electrotechnical Society, 2018, 33(10): 2176-2185. [11] 张也, 颜湘武. 微网功率耦合特性分析及解耦控制[J]. 电网技术, 2016, 40(3): 812-818. Zhang Ye, Yan Xiangwu.Coupling analysis and decoupling control of microgrid power[J]. Power System Technology, 2016, 40(3): 812-818. [12] 李鹏, 杨世旺, 王阳, 等. 基于相对增益分析的目标函数对角化微网功率解耦控制方法[J]. 中国电机工程学报, 2014, 34(13): 2039-2046. Li Peng, Yang Shiwang, Wang Yang, et al.Objective function diagonalization decoupling control of microgrid power based on relative gain analysis[J]. Proceedings of the CSEE, 2014, 34(13): 2039-2046. [13] De Brabandere K, Bolsens B, Van den Keybus J, et al.A voltage and frequency droop control method for parallel inverters[J]. IEEE Transactions on Power Electronics, 2007, 22(4): 2501-2507. [14] Wu Teng, Liu Zeng, Liu Jinjun.A unified virtual power decoupling method for droop-controlled parallel inverters in microgrids[J]. IEEE Transactions on Power Electronics, 2016, 31(8): 5587-5603. [15] Li Yan, Li Yunwei.Power management of inverter interfaced autonomous microgrid based on virtual frequency-voltage frame[J]. IEEE Transactions on Smart Grid, 2011, 2(1): 30-40. [16] 杨东升, 阮新波, 吴恒. 提高LCL型并网逆变器对弱电网适应能力的虚拟阻抗方法[J]. 中国电机工程学报, 2014, 34(15): 2327-2335. Yang Dongsheng, Ruan Xinbo, Wu Heng.A virtual impedance method to improve the performance of LCL-type grid-connected inverters under weak grid conditions[J].Proceedings of the CSEE, 2014, 34(15): 2327-2335. [17] Zhang Ping, Zhao Hengyang, Cai Huanyu, et al.Power decoupling strategy based on ‘virtual negative resistor' for inverters in low-voltage microgrids[J]. IET Power Electronics, 2016, 9(5): 1037-1044. [18] 梁海峰, 郑灿, 高亚静, 等微网改进下垂控制策略研究[J].中国电机工程学报, 2017, 37(17): 4901-4910. Liang Haifeng, Zheng Can, Gao Yajing, et al.Research on improved droop control strategy for microgrid[J]. Proceedings of the CSEE, 2017, 37(17): 4901-4910. [19] Mahmood H, Michaelson D, Jiang J.Accurate reactive power sharing in an islanded microgrid using adaptive virtual impedances[J]. IEEE Transactions on Power Electronics, 2015, 30(3): 1605-1617. [20] 屈子森, 蔡云旖, 杨欢, 等. 基于自适应虚拟阻抗的虚拟同步机功率解耦控制策略[J]. 电力系统自动化, 2018, 42(17): 58-66. Qu Zisen, Cai Yunyi, Yang Huan, et al.Strategy of power decoupling control for virtual synchronous generator based on adaptive virtual impedances[J]. Automation of Electric Power Systems, 2018, 42(17): 58-66. [21] 李明桓, 王跃, 徐宁一, 等. 松弛小功角约束条件的虚拟同步发电机功率解耦策略[J]. 电力系统自动化, 2018, 42(9): 59-68. Li Minghuan, Wang Yue, Xu Ningyi, et al.Power decoupling strategy for virtual synchronous generator relaxing condition of small power angle[J]. Automation of Electric Power Systems, 2018, 42(9): 59-68. [22] 李旭枫, 陆立民, 成乐祥, 等. 基于自适应虚拟阻抗改进无功环路的虚拟同步功率解耦控制策略[J]. 电网技术, 2019, 43(10): 3752-3760. Li Xufeng, Lu Limin, Cheng Lexiang, et al.Power decoupling control strategy in virtual synchronous generator with improved reactive power loop based on adaptive virtual impedance[J]. Power System Technology, 2019, 43(10): 3752-3760. [23] Guerrero J M, Garcia De Vicuna L, Matas J, et al. Output impedance design of parallel-connected UPS inverters with wireless load-sharing control[J]. IEEE Transactions on Industrial Electronics, 2004, 19(5): 1205-1213. [24] 李武华, 王金华, 杨贺雅, 等. 虚拟同步发电机的功率动态耦合机理及同步频率谐振抑制策略[J]. 中国电机工程学报, 2017, 37(2): 381-390. Li Wuhua, Wang Jinhua, Yang Heya, et al.Power dynamic coupling mechanism and resonance suppression of synchronous frequency for virtual synchronous generators[J]. Proceedings of the CSEE, 2017, 37(2): 381-390 [25] Huang J, Corzine K A, Belkhayat M.Small-signal impedance measurement of power-electronics-based AC power systems using line-to-line current injection[J]. IEEE Transactions on Power Electronics, 2009, 24(2): 445-455. |
|
|
|