|
|
Heat Transfer Matching Characteristic and Heat Control Method of Solid-State Electric Heating Thermal Storage System |
Xing Zuoxia1, Fan Jinpeng1, Chen Lei1, Ge Weichun2, Qi Fengsheng3 |
1. College of Electrical Engineering Shenyang University of Technology Shenyang 110870 China; 2. State Grid Liaoning Electric Power Co. Ltd Shenyang 110004 China; 3. School of Metallurgy Northeastern University Shenyang 110819 China |
|
|
Abstract The solid-state electric heating thermal storage system is an emerging large-capacity peak shaving technology in power system. Studying its heat transfer matching characteristic and heat control method is of great significance for improving reliability and heat transfer. In this paper, by establishing the heat transfer rate balance equation and using numerical simulation method, the correlation between the design parameters of heat storage system and heat transfer matching is analyzed. And through the heat transfer matching performance evaluation criteria such as the step contribution degree, the Biot number and the Fourier number, the heat transfer matching optimization design effect is quantified and compared. The results show that the temperature of the thermal storage unit increases linearly with the increase of electric heating power, decreases exponentially with the increase of hole ratio and circulating wind speed. Reducing the electric heating power, increasing the hole ratio and circulating wind speed can enhanced the soaking heat, and increasing the hole ratio can improve the thermal storage degree. The experimental verification proves that through the multi-parameter collaborative optimization and the feedforward compensation control, better heat transfer matching can be achieved.
|
Received: 16 April 2019
|
|
|
|
|
[1] 章艳, 吕泉, 李杨, 等. 四种热电厂“电热解耦”改造方案的运行灵活性剖析[J]. 电力系统自动化, 2020, 44(2):163-171. Zhang Yan, Lv Quan, Li Yang, et al.Analysis on operation flexibility of combined heat and power plant with four improved power-heat decoupling schemes[J]. Automation of Electric Power Systems, 2020, 44(2):163-171. [2] 车泉辉, 娄素华, 吴耀武, 等. 计及条件风险价值的含储热光热电站与风电电力系统经济调度[J]. 电工技术学报, 2019, 34(10): 2047-2055. Che Quanhui, Lou Suhua, Wu Yaowu, et al.Economic dispatching for power system of concentrated solar power plant with thermal energy storage and wind power considering conditional value-at-risk[J]. Transactions of China Electrotechnical Society, 2019, 34(10): 2047-2055. [3] 葛维春, 张艳军, 高超, 等. 基于风电消纳能力态势划分的源荷储系统分阶段优化策略[J]. 电力系统自动化, 2019, 43(15): 26-33. Ge Weichun, Zhang Yanjun, Gao Chao, et al.Phased optimal strategy of source-load-storage system based on state partition of accommodation capacity of wind power[J]. Automation of Eectric Power Systems, 2019, 43(15): 26-33. [4] 程中林, 杨莉, 江全元, 等. 储热消纳弃风的市场竞价策略算法[J]. 电力系统保护与控制, 2018, 46(10): 31-38. Cheng Zhonglin, Yang Li, Jiang Quanyuan, et al.Research on bidding algorithm for wind accommodation by thermal storage market[J]. Transactions of China Electrotechnical Society, 2018, 46(10): 31-38. [5] 陈柏翰, 冯伟, 孙凯, 等. 冷热电联供系统多元储能及孤岛运行优化调度方法[J]. 电工技术学报, 2019, 34(15): 3231-3243. Chen Bohan, Feng Wei, Sun Kai, et al.Multi-energy storage system and islanded optimal dispatch method of CCHP[J]. Transactions of China Electrotechnical Society, 2019, 34(15): 3231-3243. [6] 杨小平, 杨晓西, 徐勇军, 等. 太阳能热发电系统蓄热过程熵产分析[J]. 工程热物理学报, 2014, 35(5): 854-857. Yang Xiaoping, Yang Xiaoxi, Xu Yongjun, et al.The analysis of entropy generation during thermal charging process in solar thermal power system[J]. Journal of Engineering Thermophysics, 2014, 35(5): 854-857. [7] 杨小平, 杨晓西, 左远志, 等. 高温填充床蓄热过程中流固传热温差分析[J]. 工程热物理学报, 2015, 36(4): 825-828. Yang Xiaoping, Yang Xiaoxi, Zuo Yuanzhi, et al.The transfer temperature difference study between fluid and solid during the charging process of a high temperature packed bed storage system[J]. Journal of Engineering Thermophysics, 2015, 36(4): 825-828. [8] 杨勇平, 汉京晓, 李沛文, 等. 导热油与沙砾混合物斜温层单罐蓄热特性[J]. 中国电机工程学报, 2015, 35(3): 631-637. Yang Yongping, Han Jingxiao, Li Peiwen, et al.Thermal energy storage characteristics of synthetic oil and sand mixture for thermocline single tank[J]. Proceedings of the CSEE, 2015, 35(3): 631-637. [9] Belusko M, Sheoran S, Bruno F.Effectiveness of direct contact PCM thermal storage with a gas as the heat transfer fluid[J]. Applied Energy, 2015, 137: 748-757. [10] Hänchen M, Brückner S, Steinfeld A.High-temperature thermal storage using a packed bed of rocks-heat transfer analysis and experimental validation[J]. Applied Thermal Engineering, 2011, 31(10): 1798-1806. [11] Andreozzi A, Buonomo B, Manca O, et al.Transient analysis of heat transfer in parallel squared channels for high temperature thermal storage[J]. Computational Thermal Sciences, 2015, 7(5-6): 477-489. [12] Andreozzi A, Buonomo B, Pasqua A D, et al.Heat transfer behaviors of parallel plate systems in sensible thermal energy storage[J]. Energy Procedia, 2017, 126: 107-114. [13] 胡志培, 孙志高, 李安桂. 蓄热单元尺寸对融化传热增强作用的数值研究[J]. 工程热物理学报, 2018, 39(7): 1532-1537. Hu Zhipei, Sun Zhigao, Li Angui.Numerical investigation of melting heat transfer enhancement of enclosure geometry[J]. Journal of Engineering Thermophysics, 2018, 39(7): 1532-1537. [14] 张新彤, 张成明, 李立毅, 等. 基于绕组温度约束的永磁同步电机裂比优化方法(英文)[J]. 电工技术学报, 2019, 34(9): 1886-1899. Zhang Xintong, Zhang Chengming, Li Liyi, et al.Split ration optimization for permanent magnet synchronous machines considering winding temperature limitation[J]. Journal of Engineering Thermophysics, 2019, 34(9): 1886-1899. [15] Lim S H, Oh J S, Kong Y M, et al.High temperature oxidation behaviors of Fe-Cr-Al based powder porous metal and a strip[J]. Journal of Korean Institute of Metals & Materials, 2013, 51(10): 743-751. [16] Khare S, Dell'Amico M, Knight C, et al. Selection of materials for high temperature sensible energy storage[J]. Solar Energy Materials and Solar Cells, 2013, 115: 114-122. [17] 杨世铭, 陶文铨. 传热学[M]. 4版. 北京: 高等教育出版社, 2006. [18] Capdevila C, Miller M K, Pimentel G, et al.Influence of recrystallization on phase separation kinetics of oxide dispersion strengthened Fe-Cr-Al alloy[J]. Scripta Materialia, 2012, 66(5): 254-257. [19] 王振东, 宫元生. 电热合金应用手册[M]. 北京: 冶金工业出版社, 1997. [20] 李明飞, 李雪英, 任静, 等. 综合冷却效率多参数影响分析[J]. 工程热物理学报, 2017(12): 2720-2724. Li Mingfei, Li Xueying, Ren Jing, et al.Multi-parameters influence analysis of overall cooling effectiveness[J]. Journal of Engineering Thermophysics, 2017(12): 2720-2724. [21] 赵镇南, 时雨荃. 相变乳状液的储冷模型与参数分析[J]. 工程热物理学报, 2003(4): 658-660. Zhao Zhennan, Shi Yuquan.The cold-storage model and parameters analyses for a phase change emulsion[J]. Journal of Engineering Thermophysics, 2003(4): 658-660. [22] 佟文明, 孙静阳, 舒圣浪, 等. 不同数值方法在自扇冷永磁同步电机三维热分析中的应用[J]. 电工技术学报, 2017, 32(增刊1): 151-159. Tong Wenming, Sun Jingyang, Shu Shenglang, et al.Application of different numerical methods in 3D thermal analysis for fan-ventilated permanent magnet synchronous machines[J]. Transactions of China Electrotechnical Society, 2017, 32(S1): 151-159. [23] 邢作霞. 基于时变负荷的三级可调加热功率投切控制方法: 中国, 201610053611.1[P].2016-05-25. [24] 于洪霞. 分工况PID+自适应前馈补偿的相变电蓄热供暖系统及方法: 中国, 201811197010.3[P].2018-10-15. |
|
|
|