|
|
Maximum Power Point Tracking of Centralized Thermoelectric Generation System using Greedy Neural Network |
Yang Bo1, Wang Junting1, Zhong Linen1, Shu Hongchun1, Yu Tao2, Zhang Xiaoshun3, Tan Tian3 |
1. Faculty of Electric Power Engineering Kunming University of Science and Technology Kunming 650500 China; 2. College of Electric Power South China University of Technology Guangzhou 510640 China; 3. College of Engineering Shantou University Shantou 515063 China |
|
|
Abstract A novel greedy search based neural network (GSNN) for centralized thermoelectric generation (TEG) system under non-uniform temperature distribution (NTD) condition is designed to achieve maximum power point tracking (MPPT) in this paper. Firstly, a two-layer feed-forward neural network model is established, where input is defined as duty cycle of DC-DC boost converter while output as power output of TEG system. Then, Levenberg-Marquardt method is adopted to train neural network, accordingly the I/O curve that draws an evident distinction between local maximum power point (LMPP) and global maximum power point (GMPP) is fitted. Meanwhile, a greedy search is well performed to explore GMPP over a compressed search range. Lastly, three case studies are carried out, i.e., constant temperature, step temperature and sensitivity analysis. Simulation results demonstrate that GSNN could achieve maximum power output with speediness and stability under NTD compared to perturb and observe (P&O), particle swarm optimization (PSO) and grey wolf optimizer (GWO). Furthermore, a dSpace based hardware-in-the-loop (HIL) experiment is undertaken to validate implementation feasibility of the proposed algorithm.
|
Received: 17 December 2019
|
|
|
|
|
[1] 晏维, 邱国跃, 袁旭峰. 半导体温差发电技术应用及研究综述[J]. 电源技术, 2016, 40(8): 1737-1740. Yan Wei, Qiu Guoyue, Yuan Xufeng.Application and research of semiconductor thermoelectric power generation technology[J]. Chinese Journal of Power Sources, 2016, 40(8): 1737-1740. [2] Uchida K, Adachi H, Kikkawa T, et al.Thermoelectric generation based on spin Seebeck effects[J]. Proceedings of the IEEE, 2016, 104(10): 1946-1973. [3] He Wei, Zhang Gan, Zhang Xingxing, et al.Recent development and application of thermoelectric generator and cooler[J]. Applied Energy, 2015, 143: 1-25. [4] Twaha S, Zhu J, Yan Y, et al.Performance analysis of thermoelectric generator using DC-DC converter with incremental conductance based maximum power point tracking[J]. Energy for Sustainable Development, 2017, 37: 86-98. [5] Yu C, Chau K T.Thermoelectric automotive waste heat energy recovery using maximum power point tracking[J]. Energy Conversion and Management, 2009, 50(6): 1506-1512. [6] Montecucco A, Knox A R.Maximum power point tracking converter based on the open-circuit voltage method for thermoelectric generators[J]. IEEE Transactions on Power Electronics, 2014, 30(2): 828-839. [7] Laird I, Lu D D C. High step-up DC/DC topology and MPPT algorithm for use with a thermoelectric generator[J]. IEEE Transactions on Power Electronics, 2012, 28(7): 3147-3157. [8] Liu, Yihua, Chiu Y H, Huang Jiawei, et al. A novel maximum power point tracker for thermoelectric generation system[J]. Renewable Energy, 2016, 97: 306-318. [9] Bijukumar B, Raam A G K, Ganesan S I, et al. A linear extrapolation-based MPPT algorithm for thermoelectric generators under dynamically varying temperature conditions[J]. IEEE Transactions on Energy Conversion, 2018, 33(4): 1641-1649. [10] Champier D.Thermoelectric generators: a review of applications[J]. Energy Conversion and Management, 2017, 140: 167-181. [11] Sun Kai, Qiu Zhaoxin, Wu Hongfei, et al.Evaluation on high-efficiency thermoelectric generation systems based on differential power processing[J]. IEEE Transactions on Industrial Electronics, 2017, 65(1): 699-708. [12] 杨博, 束洪春, 邱大林, 等. 变风速下双馈感应发电机非线性鲁棒状态估计反馈控制[J]. 电力系统自动化, 2019, 43(4): 60-76. Yang Bo, Shu Hongchun, Qiu Dalin, et al.Nonlinear robust state estimation feedback control of doubly-fed induction generator under variable wind speeds[J]. Automation of Electric Power Systems, 2019, 43(4): 60-76. [13] Koad R B A, Zobaa A F, El-Shahat A. A novel MPPT algorithm based on particle swarm optimization for photovoltaic systems[J]. IEEE Transactions on Sustainable Energy, 2016, 8(2): 468-476. [14] Mohanty S, Subudhi B, Ray P K.A new MPPT design using grey wolf optimization technique for photovoltaic system under partial shading conditions[J]. IEEE Transactions on Sustainable Energy, 2015, 7(1): 181-188. [15] 商立群, 朱伟伟. 基于全局学习自适应细菌觅食算法的光伏系统全局最大功率点跟踪方法[J]. 电工技术学报, 2019, 34(12): 2606-2614. Shang Liqun, Zhu Weiwei.Photovoltaic system global maximum power point tracking method based on the global learning adaptive bacteria foraging algorithm[J]. Transactions of China Electrotechnical Society, 2019, 34(12): 2606-2614. [16] Mohapatra A, Nayak B, Das P, et al.A review on MPPT techniques of PV system under partial shading condition[J]. Renewable and Sustainable Energy Reviews, 2017, 80: 854-867. [17] 徐春华, 陈克绪, 马建, 等. 基于深度置信网络的电力负荷识别[J]. 电工技术学报, 2019, 34(19): 4135-4142. Xu Chunhua, Chen Kexu, Ma Jian, et al.Recognition of power loads based on deep belief network[J]. Transactions of China Electrotechnical Society, 2019, 34(19): 4135-4142. [18] 陆继翔, 张琪培, 杨志宏, 等. 基于CNN-LSTM混合神经网络模型的短期负荷预测方法[J]. 电力系统自动化, 2019, 43(8): 131-137 Lu Jixiang, Zhang Qipei, Yang Zhihong, et al.Short-term load forecasting method based on CNN-LSTM hybrid neural network model[J]. Automation of Electric Power Systems, 2019, 43(8): 131-137. [19] 郭永芳, 黄凯, 李志刚. 基于短时搁置端电压压降的快速锂离子电池健康状态预测[J]. 电工技术学报, 2019, 34(19): 3968-3978. Guo Yangfang, Huang Kai, Li Zhigang.Fast state of health prediction of lithium-ion battery based on terminal voltage drop during rest for short time[J]. Transactions of China Electrotechnical Society, 2019, 34(19): 3968-3978. [20] Molina M G, Juanico L E, Rinalde G F, et al.Design of improved controller for thermoelectric generator used in distributed generation[J]. International Journal of Hydrogen Energy, 2010, 35: 5968-5973. [21] 孙祥晟, 陈芳芳, 贾鉴, 等. 基于经验模态分解的神经网络光伏发电预测方法研究[J]. 电气技术, 2019, 20(8): 54-58. Sun Xiangsheng, Chen Fangfang, Jia Jian, et al.Neural network based photovoltaic power generation prediction method based on empirical mode decomposition[J]. Electrical Engineering, 2019, 20(8): 54-58. [22] Wang Xizhao, Cao Weipeng.Non-iterative approaches in training feed-forward neural networks and their applications[J]. Soft Computing, 2018, 22(11), 3473-3476. [23] Kayri M.Predictive abilities of Bayesian regularization and Levenberg-Marquardt algorithms in artificial neural networks: a comparative empirical study on social data[J]. Mathematical and Computational Applications, 2016, 21(2): 20. [24] 杨博, 钟林恩, 朱德娜, 等. 部分遮蔽下改进樽海鞘群算法的光伏系统最大功率跟踪[J]. 控制理论与应用, 2019, 36(3): 339-352. Yang Bo, Zhong Linen, Zhu Dena, et al.Modified salp swarm algorithm based maximum power point tracking of PV system under partial shading condition[J]. Control Theory & Applications, 2019, 36(3): 339-352. |
|
|
|