|
|
Effect of Nano-Al2O3 Doping on Erosion Resistance of Tungsten-Copper Electrode under 100kA Pulsed Arc |
Ren Shuai1, Gong Xin1, Dai Hongyu1, Lee Li1, Geng Hao2, Liu Yong3 |
1. State Key Laboratory of Advanced Electromagnetic Engineering and Technology School of Electrical and Electronic Engineering Huazhong University of Science & Technology Wuhan 430074 China;; 2. The 713th Research Institute of China Shipbuilding Industry Corporation Zhengzhou 450015 China; 3. School of Materials Science and Engineering Henan University of Science and Technology Luoyang 471023 China |
|
|
Abstract The erosion resistance of electrode materials is one of the key factors affecting the performance and working life of gas spark switches. In order to explore whether the electrode material doped with nanoscale metalloid particles has stronger erosion resistance in the engineering application of strong pulse current, an shock large current discharge test platform was built, and W80/Cu and W80/Cu-Al2O3 were selected as the research object. The experimental study was carried out under a strong pulse current with a peak value over 100kA/0.54GW. By comparing the mass change, the microstructure and surface roughness of erosion point, it is found that the addition of nanometer Al2O3 makes the tungsten-copper alloy have stronger erosion resistance under strong pulse discharge. Combined with the erosion mechanism of electrode and the law of arc motion, it is analyzed that the erosion resistance of W80/Cu-Al2O3 is better than that of tungsten-copper alloy for the following reasons: the addition of Al2O3 reduces the mass of tungsten-copper alloy sputtering in the form of solid phase and liquid phase, and makes the distribution of cathode arc more uniform. As a result, the mass loss and surface roughness are reduced.
|
Received: 19 March 2019
Published: 12 May 2020
|
|
|
|
|
[1] 吴佳玮, 韩若愚, 周海滨, 等. 大电流气体火花开关聚四氟乙烯绝缘子绝缘劣化产物分析[J]. 电工技术学报, 2018, 33(2): 459-466. Wu Jiawei, Han Ruoyu, Zhou Haibin, et al.Insulation degradation products analysis of PTFE insulators in gas spark gap switch caused by high current and high energy arc influences[J]. Transactions of China Electrotechnical Society, 2018, 33(2): 459-466. [2] 曾晗, 林福昌, 蔡礼, 等. 石墨电极烧蚀机理及实验[J]. 电工技术学报, 2013, 28(1): 43-49. Zeng Han, Lin Fuchang, Cai Li, et al.Mechanism and experiment of graphite electrode erosion[J]. Transa- ctions of China Electrotechnical Society, 2013, 28(1): 43-49. [3] 谢昌明, 谈效华, 杜涛, 等. 气体火花开关电极烧蚀形貌研究[J]. 电工技术学报, 2015, 30(20): 246-251. Xie Changming, Tan Xiaohua, Du Tao, et al.Micro- structure characteristics in electrodes of gas spark gap after erosion[J]. Transactions of China Electro- technical Society, 2015, 30(20): 246-251. [4] Tseng K H, Kung C, Liao T T, et al.Investigation of the arc erosion behaviour of W-Cu composites[J]. Canadian Metallurgical Quarterly, 2010, 49(3): 263-274. [5] 吴佳玮, 韩若愚, 丁卫东, 等. 长寿命铜钨合金气体开关电极的烧蚀形貌[J]. 中国电机工程学报, 2017, 37(8): 323-337. Wu Jiawei, Han Ruoyu, Ding Weidong, et al.Surface morphology of Cu-W alloy electrodes in a long lifetime gas spark switch[J]. Proceedings of the CSEE, 2017, 37(8): 323-337. [6] Bregel T, Krauss-Vogt W, Michal R, et al.On the application of W/Cu materials in the fields of power engineering and plasma technology[J]. IEEE Transa- ctions on Components, Hybrids, and Manufacturing, Technology, 1991, 14(1): 8-13. [7] 田保红, 宋克兴, 刘平. 高性能弥散强化铜基复合材料及其制备技术[M]. 北京: 科学出版社, 2011. [8] Wang Xianhui, Liang Shuhua, Yang Ping, et al.Effect of Al2O3 content on electrical breakdown properties of Al2O3/Cu composite[J]. Journal of Materials Engineering and Performance, 2010, 19(9): 1330-1336. [9] Wang Xianhui, Liang Shuhua, Yang Ping, et al.Effect of Al2O3 particle size on vacuum breakdown behavior of Al2O3/Cu composite[J]. Vacuum, 2009, 83(12): 1475-1480. [10] 曹伟产, 梁淑华, 马德强, 等. 添加Al2O3对CuW70合金阴极斑点运动特性的影响[J]. 材料工程, 2010(9): 49-53. Cao Weichan, Liang Shuhua, Ma Deqiang, et al.Influence of Al2O3 addition on motion of cathode spot for CuW70 alloy[J]. Materials Engineering, 2010(9): 49-53. [11] Baghani M, Aliofkhazraei M.CuCrW (Al2O3) nano- composite: mechanical alloying, microstructure, and tribological properties[J]. International Journal of Minerals Metallurgy and Materials, 2017(11): 123-136. [12] 范景莲, 严德剑, 黄伯云, 等. 国内外钨铜复合材料的研究现状[J]. 粉末冶金工业, 2003, 13(2): 9-14. Fan Jinglian, Yan Dejian, Huang Boyun, et al.Current status of R&D of W-Cu composite materials in china and abroad[J]. Powder Metallurgy Industry, 2003, 13(2): 9-14. [13] Sheibani S, Ataie A, Heshmati-Manesh S.In- situsynthesis of Cu/Cr-Al2O3 nanocomposite by mechanical alloying and heat treatment[J]. Metallurgical & Materials Transactions A, 2010, 41(10): 2606-2612. [14] Zamani A H, Ali R, Bakar W A W A. The investigation of Ru/Mn/Cu-Al2O3 oxide catalysts for CO2/H2 methanation in natural gas[J]. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45(1): 143-152. [15] Li Xiaoang, Pei Zhehao, Zhang Yuzhao, et al.Electrode erosion properties of gas spark switches for fast linear transformer drivers[J]. Physics of Plasmas, 2017, 24(12): 122108. [16] Chen Z K, Sawa K.Particle sputtering and deposition mechanism for material transfer in breaking arcs[J]. Journal of Applied Physics, 1994, 76(6): 3326-3331. [17] Donaldson A L, Hagler M O, Kristiansen M, et al.Electrode erosion in a high current, high energy transient arcs[J]. IEEE Transactions on Magnetics, 1986, 22(6): 1441-1447. [18] 王新刚, 张怀龙, 李文静, 等. 制备工艺对WCu30合金的显微组织及抗电弧烧蚀性能的影响[J]. 稀有金属材料与工程, 2015, 44(1): 140-145. Wang Xingang, Zhang Huailong, Li Wenjing, et al.Effect of preparation process on microstructure and arc-erosion resistance of WCu30 alloy[J]. Rare Metal Materials and Engineering, 2015, 44(1): 140-145. [19] Peters J, Yin F, Borges C F M, et al. Erosion mechanisms of hafnium cathodes at high current[J]. Journal of Physics D: Applied Physics, 2005, 38(11): 1781-1794. [20] 熊佳明, 李黎, 戴宏宇, 等. 基于爆炸波及能量平衡理论的大电流冲击电弧的冲击波超压作用分析[J]. 中国电机工程学报, 2018, 38(22): 296-303. Xiong Jiaming, Lee Li, Dai Hongyu, et al.Analysis of shock wave overpressure effect of high current impulse discharge arc based on explo-sive wave and energy balance theory[J]. Proceedings of the CSEE, 2018, 38(22): 296-303. [21] Wang Hu, Zhang Qiaogen, Wei Jin, et al.Research on erosion property of field-distortion gas switch electrode in nanosecond pulse[J]. IEEE Transactions on Plasma Science, 2012, 40(6): 1733-1742. [22] Mark Lehr F, Magne Kristiaasen.Electrode erosion from high current arcs[J]. IEEE Transactions on Plasma Science, 1989, 17(5): 811-817. [23] Zhang Xiaohui, Zhang Yi, Tian Baohong, et al.Arc erosion behavior of the Al2O3-Cu/(W,Cr) electrical contacts[J]. Composites Part B: Engineering, 2019, 160: 110-118. [24] Yang Xiaohong, Zou Juntao, Xiao Peng, et al.Effects of Zr addition on properties and vacuum arc characteristics of Cu-W alloy[J]. Vacuum, 2014, 106: 16-20. [25] Dong Longlong, Chen Wenge, Deng Nan, et al.Investigation on arc erosion behaviors and mechanism of W70Cu30 electrical contact materials adding graphene[J]. Journal of Alloys and Compounds, 2017, 696: 923-930. [26] 杨晓红, 范志康, 梁淑华, 等. 添加Y2O3对CuW触头材料性能的影响[J]. 材料研究学报, 2007, 21(4): 414-420. Yang Xiaohong, Fan Zhikang, Liang Shuhua, et al.Effects of Y2O3 on properties of CuW electrical contact materials[J]. Chinese Journal of Materials Research, 2007, 21(4): 414-420. [27] Yang Zhimao, Zhang Qiuli, Wang Qingfeng, et al.Vacuum arc characteristics on nanocrystalline CuCr alloys[J]. Vacuum, 2006, 81(4): 545-549. |
|
|
|