|
|
Prediction of Battery Remaining Useful Life Based on Wavelet Packet Energy Entropy |
Chen Lin1,2, Chen Jing1, Wang Huimin1, Wei Haiyan1, Pan Haihong1 |
1. School of Mechanical Engineering Guangxi University Nanning 530004 China; 2. Guangxi Key Laboratory of Electrochemical Energy Materials Collaborative Innovation Center of Renewable Energy Materials Guangxi University Nanning 530004 China |
|
|
Abstract Accurate prediction of battery remaining useful life (RUL) is one of the key technologies of battery management systems. The traditional methods depend heavily on the battery capacity and the capacity data is difficult to obtain directly. Therefore, the wavelet packet energy entropy (WPEE) extracted from the battery discharge voltage was proposed to replace the capacity charactering the battery degradation. Then the extracted WPEE was used to construct a fractional grey model (FGM), and the model was applied to be fused with the adaptive unscented particle filter (AUPF) for realizing battery RUL prediction. The experimental results show both the battery discharge voltage WPEE and battery capacity can be used as the degradation characterization indicator under the proposed FGM-AUPF algorithm framework to achieve battery RUL prediction. And the relative error of the battery discharge voltage WPEE prediction results is no more than 5.96%.
|
Received: 22 January 2019
Published: 24 April 2020
|
|
|
|
|
[1] Liu Datong, Zhou Jianbao, Liao Haitao, et al.A health indicator extraction and optimization frame- work for lithium-ion battery degradation modeling and prognostics[J]. IEEE Transactions on Systems Man Cybernetics-systems, 2015, 45(6): 915-928. [2] 潘海鸿, 吕治强, 付兵, 等. 采用极限学习机实现锂离子电池健康状态在线估算[J]. 汽车工程, 2017, 39(12): 1375-1381. Pan Haihong, Lü Zhiqiang, Fu Bing, et al.Online estimation of lithium-ion battery's state of health using extreme learning machine[J]. Automotive Engineering, 2017, 39(12): 1375-1381. [3] Lu Languang, Han Xuebing, Li Jianqiu, et al.A review on the key issues for lithium-ion battery management in electric vehicles[J]. Journal of Power Sources, 2013, 226: 272-288. [4] Waag W, Fleischer C, Sauer D U.Critical review of the methods for monitoring of lithium-ion batteries in electric and hybrid vehicles[J]. Journal of Power Sources, 2014, 258(14): 321-339. [5] 潘海鸿, 吕治强, 李君子, 等. 基于灰色扩展卡尔曼滤波的锂离子电池荷电状态估算[J]. 电工技术学报, 2017, 32(21): 1-8. Pan Haihong, Lü Zhiqiang, Li Junzi, et al.Estimation of state of charge of lithium ion battery based on grey extended Kalman filter[J]. Transactions of China Electrotechnical Society, 2017, 32(21): 1-8. [6] Xing Yinjiao, Ma E W M, Tsui K L, et al. Battery management systems in electric and hybrid vehicles[J]. Energies, 2011, 4(11): 1840-1857. [7] 刘大同, 周建宝, 郭力萌, 等. 锂离子电池健康评估和寿命预测综述[J]. 仪器仪表学报, 2015, 36(1): 1-16. Liu Datong, Zhou Jianbao, Guo Limeng, et al.Survey on lithium-ion battery health assessment and cycle life estimation[J]. Chinese Journal of Scientific Instrument, 2015, 36(1): 1-16. [8] Zhang Lijun, Mu Zhongqiang, Sun Changyan.Remaining useful life prediction for lithium-ion batteries based on exponential model and particle filter[J]. IEEE Access, 2018(6): 17729-17740. [9] Zhang Heng, Miao Qiang, Zhang Xin, et al.An improved unscented particle filter approach for lithium-ion battery remaining useful life prediction[J]. Microelectronics Reliability, 2018, 81: 288-298. [10] Zhou Yapeng, Huang Miaohua, Chen Yupu, et al.A novel health indicator for on-line lithium-ion batteries remaining useful life prediction[J]. Journal of Power Sources, 2016, 321: 1-10. [11] Dong Guangzhong, Chm Zonghai, Wei Jinwen, et al.Battery health prognosis using brownian motion modeling and particle filtering[J]. IEEE Transactions on Industrial Electronics, 2018, 65(11): 8646-8655. [12] Zhang Yongzhi, Xiong Rui, He Hongwen, et al.Lithium-ion battery remaining useful life prediction with Box-Cox transformation and monte Carlo simulation[J]. IEEE Transactions on Industrial Electronics, 2019, 66(2): 1585-1597. [13] Wei Jingwen, Dong Guangzhong, Chen Zonghai.Remaining useful life prediction and state of health diagnosis for lithium-ion batteries using particle filter and support vector regression[J]. IEEE Transactions on Industrial Electronics, 2018, 65(7): 5634-5643. [14] Yu Peng, Hou Yandong, Song Yuchen, et al.Lithium-ion battery prognostics with hybrid gaussian process function regression[J]. Energies, 2018, 11(6): 1-20. [15] Walker E, Rayman S, White R E.Comparison of a particle filter and other state estimation methods for prognostics of lithium-ion batteries[J]. Journal of Power Sources, 2015, 287(4): 1-12. [16] 陈伟根, 谢波, 龙震泽, 等. 基于小波包能量熵的油纸绝缘气隙放电阶段识别[J]. 中国电机工程学报, 2016, 36(2): 563-569. Chen Weigen, Xie Bo, Long Zhenze, et al.Stage identification in air-gap discharge of oil-impregnated paper insulation based on wavelet packet energy entropy[J]. Proceedings of the CSEE, 2016, 36(2): 563-569. [17] 袁莉芬, 孙业胜, 何怡刚, 等. 基于小波包优选的模拟电路故障特征提取方法[J]. 电工技术学报, 2018, 33(1): 158-165. Yuan Lifen, Sun Yesheng, He Yigang, et al.Fault feature extraction method of analog circuits based on wavelet packet optimization[J]. Transactions of China Electrotechnical Society, 2018, 33(1): 158-165. [18] 张亚楠, 魏武, 武林林. 基于小波包Shannon熵SVM和遗传算法的电机机械故障诊断[J]. 电力自动化设备, 2010, 30(1): 87-91. Zhang Yanan, Wei Wu, Wu Linlin.Motor mechanical fault diagnosis based on wavelet packet, Shannon entropy, SVM and GA[J]. Electric Power Automation Equipment, 2010, 30(1): 87-91. [19] 林俐, 周鹏, 邹兰青. 基于新能源产业导向的电力系统能源效率评估及影响因素分析[J]. 电力建设, 2017, 38(1): 123-130. Lin Li, Zhou Peng, Zou Lanqing.Assemment and influential factors analysis of power energy effici- ency based on new energy industrial orientation[J]. Electric Power Construction, 2017, 38(1): 123-130. [20] Ji Yuanyuan, Wang Liming, Zhang Hanghui, et al.Semiparametric estimation of a Box-Cox trans- formation model with varying coefficients model[J]. Science China: Mathematics, 2017, 60(5): 897-922. [21] Chen Lin, Lin Weilong, Li Junzi, et al.Prediction of lithium-ion battery capacity with metabolic grey model[J]. Energy, 2016, 106: 662-672. [22] 李姗姗, 王力农, 方雅琪, 等. 基于布拉格光纤光栅传感技术的复合材料杆塔老化寿命预测[J]. 电工技术学报, 2018, 33(1): 217-224. Li Shanshan, Wang Linong, Fang Yaqi, et al.Aging prediction of composite tower based on FBG sensing technology[J]. Transactions of China Electrotechnical Society, 2018, 33(1): 217-224. [23] Cervantes A, Galvan I M, Isasi P.AMPSO: a new particle swarm method for nearest neighborhood classification[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2009, 39(5): 1082-1091. [24] 孙江山, 刘敏, 邓磊, 等. 基于自适应无迹卡尔曼滤波的配电网状态估计[J]. 电力系统保护与控制, 2018, 46(11): 1-7. Sun Jiangshan, Liu Min, Deng Lei, et al.State estimation of distribution network based on adaptive unscented Kalman filter[J]. Power System Protection and Control, 2018, 46(11): 1-7. [25] 谷苗, 夏超英, 田聪颖. 基于综合型卡尔曼滤波的锂离子电池荷电状态估算[J]. 电工技术学报, 2019, 34(2): 419-426. Gu Miao, Xia Chaoying, Tian Congying.Li-ion battery state of charge estimation based on com- prehensive Kalman filter[J]. Transactions of China Electrotechnical Society, 2019, 34(2): 419-426. [26] 谢长君, 费亚龙, 曾春年, 等. 基于无迹粒子滤波的车载锂离子电池状态估计[J]. 电工技术学报, 2018, 33(17): 3958-3964. Xie Changjun, Fei Yalong, Zeng Chunnian, et al.State estimation of on-board lithium-ion battery based on unscented particle filter[J]. Transactions of China Electrotechnical Society, 2018, 33(17): 3958-3964. [27] Chen Luping, Xu Liangjun, Zhou Yilin.Novel approach for lithium-ion battery on-line remaining useful life prediction based on permutation entropy[J].Energies, 2018, 11(4): 1-15. |
|
|
|