|
|
Remaining Useful Life Prediction of Battery Using Metabolic Grey Particle Filter |
Wei Haiyan1, Chen Jing1, Wang Huimin1, An Jingjing1, Chen Lin1,2 |
1. School of Mechanical Engineering Guangxi University Nanning 530004 China; 2. Guangxi Key Laboratory of Electrochemical Energy Materials Collaborative Innovation Center of Renewable Energy Materials Guangxi University Nanning 530004 China |
|
|
Abstract Remaining useful life (RUL) prediction is one of the core technologies of battery management systems. In order to accurately predict the battery RUL with less data volume, a metabolic grey model particle filter (MGM-PF) algorithm is proposed. Firstly, the first-order RC model is used to estimate the battery capacity online. Then, based on the obtained capacity data, the grey development coefficient is dynamically updated by the metabolic grey model, and the coefficient is used as the model parameter to construct a dynamic state space model that characterizes the battery capacity degradation. Finally, the particle filter is used to track the battery capacity degradation to realize the battery RUL prediction and derive the uncertainty expression of the prediction results. The experimental results show that the proposed MGM-PF algorithm based on online capacity estimation can accurately predict the battery RUL.
|
Received: 18 January 2019
Published: 27 March 2020
|
|
|
|
|
[1] Lu Langguang, Han Xuebing, Li Jianqiu, et al.A review on the key issues for lithium-ion battery management in electric vehicles[J]. Journal of Power Sources, 2013, 226: 272-288. [2] Waag W, Fleischer C, Sauer D U.Critical review of the methods for monitoring of lithium-ion batteries in electric and hybrid vehicles[J]. Journal of Power Sources, 2014, 258: 321-339. [3] 焦东升, 王海云, 朱洁, 等. 基于离散Fréchet距离的电动汽车电池健康状态诊断方法[J]. 电力系统保护与控制, 2016, 44(12): 68-74. Jiao Dongsheng, Wang Haiyun, Zhu Jie, et al.EV battery SOH diagnosis method based on discrete Fréchet distance[J]. Power System Protection and Control, 2016, 44(12): 68-74. [4] 潘海鸿, 吕治强, 李君子, 等. 基于灰色扩展卡尔曼滤波的锂离子电池荷电状态估算[J]. 电工技术学报, 2017, 32(21): 1-8. Pan Haihong, Lü Zhiqiang, Li Junzi, et al.Estimation of lithium-ion battery state of charge based on grey prediction model-extended Kalman filter[J]. Transa- ctions of China Electrotechnical Society, 2017, 32(21): 1-8. [5] 刘大同, 周建宝, 郭力萌, 等. 锂离子电池健康评估和寿命预测综述[J]. 仪器仪表学报, 2015, 36(1): 1-16. Liu Datong, Zhou Jianbao, Guo Limeng, et al.Survey on lithium-ion battery health assessment and cycle life estimation[J]. Journal of Scientific Instrument, 2015, 36(1): 1-16. [6] Jouin M, Gouriveau R, Hissel D, et al. Particle filter-based prognostics: review, discussion and perspectives[J]. Mechanical Systems and Signal Processing, 2016, 72-73: 2-31. [7] 苗强, 崔恒娟, 谢磊, 等. 粒子滤波在锂离子电池剩余寿命预测中的应用[J]. 重庆大学学报, 2013, 36(8): 47-52, 60. Miao Qiang, Cui Hengjuan, Xie Lei, et al.Remaining useful life prediction of the lithium-ion battery using particle filtering[J]. Journal of Chongqing University, 2013, 36(8): 47-52, 60. [8] Zhou Yapeng, Huang Miaohua, Chen Yupu, et al.A novel health indicator for on-line lithium-ion batteries remaining useful life prediction[J]. Journal of Power Sources, 2016, 321: 1-10. [9] Liu Datong, Zhou Jianbao, Liao Haitao, et al.A health indicator extraction and optimization frame- work for lithium-ion battery degradation modeling and prognostics[J]. IEEE Transactions on Systems Man Cybernetics-Systems, 2015, 45(6): 915-928. [10] Wei Jingwen, Dong Guangzhong, Chen Zonghai.Remaining useful life prediction and state of health diagnosis for lithium-ion batteries using particle filter and support vector regression[J]. IEEE Transactions on Industrial Electronics, 2018, 65(7): 5634-5643. [11] Wang Dong, Miao Qiang, Pecht M.Prognostics of lithium-ion batteries based on relevance vectors and a conditional three-parameter capacity degradation model[J]. Journal of Power Sources, 2013, 239: 253-264. [12] Walker E, Rayman S, White R E.Comparison of a particle filter and other state estimation methods for prognostics of lithium-ion batteries[J]. Journal of Power Sources, 2015, 287: 1-12. [13] 熊瑞. 基于数据模型融合的电动车辆动力电池组状态估计研究[D]. 北京: 北京理工大学, 2014. [14] Chen Lin, Lin Weilong, Li Junzi, et al.Prediction of lithium-ion battery capacity with metabolic grey model[J]. Energy, 2016, 106: 662-672. [15] 陈息坤, 孙冬, 陈小虎. 锂离子电池建模及其荷电状态鲁棒估计[J]. 电工技术学报, 2015, 30(15): 141-147. Chen Xikun, Sun Dong, Chen Xiaohu.Modeling and state of charge robust estimation for lithium-ion batteries[J]. Transactions of China Electrotechnical Society, 2015, 30(15): 141-147. [16] 杨帆, 代锋, 姚德贵, 等. 基于最小二乘QR分解算法的接地网磁场重构方法及应用[J]. 电工技术学报, 2016, 31(5): 184-191. Yang Fan, Dai Feng, Yao Degui, et al.Least square QR factorization arithmetic based magnetic field reconstruction for grounding grid and its appli- cation[J]. Transactions of China Electrotechnical Society, 2016, 31(5): 184-191. [17] 谷苗, 夏超英, 田聪颖. 基于综合型卡尔曼滤波的锂离子电池荷电状态估算[J]. 电工技术学报, 2019, 34(2): 419-426. Gu Miao, Xia Chaoying, Tian Congying.Li-ion battery state of charge estimation based on com- prehensive Kalman filter[J]. Transactions of China Electrotechnical Society, 2019, 34(2): 419-426. [18] 刘伟龙, 王丽芳, 廖承林, 等. 充电模态下电动汽车动力电池模型辨识[J]. 电工技术学报, 2017, 32(11): 198-207. Liu Weilong, Wang Lifang, Liao Chenglin, et al.Parameters identification method of battery model for electric vehicles under the charging mode[J]. Transactions of China Electrotechnical Society, 2017, 32(11): 198-207. [19] Farmann A, Waag W, Marongiu A, et al.Critical review of on-board capacity estimation techniques for lithium-ion batteries in electric and hybrid electric vehicles[J]. Journal of Power Sources, 2015, 281: 114-130. [20] Zhang Lijun, Mu Zhongqiang, Sun Changyan.Remaining useful life prediction for lithium-ion batteries based on exponential model and particle filter[J]. IEEE Access, 2018, 6: 17729-17740. [21] 谢长君, 费亚龙, 曾春年, 等. 基于无迹粒子滤波的车载锂离子电池状态估计[J]. 电工技术学报, 2018, 33(17): 3958-3964. Xie Changjun, Fei Yalong, Zeng Chunnian, et al.State estimation of on-board lithium-ion battery based on unscented particle filter[J]. Transactions of China Electrotechnical Society, 2018, 33(17): 3958-3964. |
|
|
|