|
|
Research on Spatiotemporal Behavior of Electric Vehicles Considering the Users’Bounded Rationality |
Wu Fuzhang, Yang Jun, Lin Yangjia, Xu Jian, Sun Yuanzhang |
School of Electrical Engineering and Automation Wuhan University Wuhan 430072 China |
|
|
Abstract The spatiotemporal behavior of electric vehicles (EVs) includes spatiotemporal transfer behavior and charging behavior. The accurate modeling of the spatiotemporal behavior of EVs has become the key to the effective interaction between large-scale EVs and power grid. The idea of activity-based analysis to understand the travel behavior as the activity derived behavior was applied in the paper, and the transfer relationship between different activity chains was established. Based on the cumulative prospect theory, the bounded rationality psychology of users in the choice of travel mode, travel path and departure time was described. Considering the dynamic characteristics of traffic network and the charging characteristics of EVs, the spatiotemporal distribution characteristics of EVs on each activity chain were studied. Finally, the Dupius network, a typical traffic network, was used to study the spatiotemporal transfer and charging behavior characteristics of EVs with different users’psychologies, proportions of EVs and service capabilities of charging stations. The simulation results show that the proposed method can more reasonably describe the users' choice psychology and the spatiotemporal behavior, and it is found that the proportion of EVs and the service capacity of charging station have great effect on them.
|
Received: 23 April 2019
Published: 07 April 2020
|
|
|
|
|
[1] 杨晓东, 张有兵, 蒋杨昌, 等. 微电网下考虑分布式电源消纳的电动汽车互动响应控制策略[J]. 电工技术学报, 2018, 33(2): 390-400. Yang Xiaodong, Zhang Youbing, Jiang Yangchang, et al.Renewable energy accommodation-based strategy for electric vehicle considering dynamic interaction in microgrid[J]. Transactions of China Electrotechnical Society, 2018, 33(2): 390-400. [2] 黄小庆, 陈颉, 谢啟波, 等. 用户充电选择对电网充电调度的影响[J]. 电工技术学报, 2018, 33(13): 3002-3011. Huang Xiaoqing, Chen Wei, Xie Qibo, et al.The influence of users’ charging selection on charging schedule power grid[J]. Transactions of China Electrotechnical Society, 2018, 33(13): 3002-3011. [3] 张晨彧, 丁明, 张晶晶. 基于交通出行矩阵的私家车充电负荷时空分布预测[J]. 电工技术学报, 2017, 32(1): 78-87. Zhang Chenyu, Ding Ming, Zhang Jingjing.A temporal and spatial distribution forecasting of private car charging load based on origin-destination matrix[J]. Transactions of China Electrotechnical Society, 2017, 32(1): 78-87. [4] 王毅, 谷亿, 丁壮, 等. 基于模糊熵和集成学习的电动汽车充电需求预测[J]. 电力系统自动化, 2020, 44(03): 114-124. Wang Yi, Gu Yi, Ding Zhuang, et al.Charging demand forecasting of electric vehicle based on empirical mode decomposition-fuzzy entropy and ensemble learning[J]. Automation of Electric Power Systems, 2020, 44(03): 114-124. [5] 茆美琴, 陈强, 丁勇, 等. 基于模块化多电平换流器的电动汽车集群与智能电网集成系统参数优化设计[J]. 电工技术学报, 2018, 33(16): 3802-3810. Mao Meiqin, Chen Qiang, Ding Yong, et al.Parameters optimization design for MMC-based EV fleet integrated into smart grid[J]. Transactions of China Electrotechnical Society, 2018, 33(16): 3802-3810. [6] Gomez J C, Morcos M M.Impact of EV battery chargers on the power quality of distribution systems[J]. IEEE Transactions on Power Delivery, 2003, 18(3): 975-981. [7] 杨田, 刘晓明, 吴其, 等. 电动汽车充电站选址对电压稳定影响的研究[J]. 电力系统保护与控制, 2018, 46(5): 31-37. Yang Tian, Liu Xiaoming, Wu Qi, et al.Research on impacts of electric vehicle charging station location on voltage stability[J]. Power System Protection and Control, 2018, 46(5): 31-37. [8] Ben-Akiva M, Lerman S R.Discrete choice analysis: theory and application analysis[M]. Cambridge, Massachusetts: MIT Press, 1985. [9] Lu Xuedong, Eric I P.Socio-demographics, activity participation and travel behavior[J]. Transportation Research A, 1999, 33(1): 1-18. [10] Bath C R.A model of post home-arrival activity participation behavior[J]. Transportation Research B, 1998, 32(1): 387-400. [11] Chapin F S.Human time allocation in the city[C]// Human Activity and Time Geography, London, 1978, 2: 13-26. [12] Allais M, Hagen O E.Expected utility hypothesis and the allias paradox[M]. Dordreche, Holland: D. Reidel Publishing Co. 1979. [13] Ellsberg D.Risk, ambiguity and the savage axioms[J]. Quaterly Journal of Economics, 1961, 75(4): 643-669. [14] 田立亭, 史双龙, 贾卓. 电动汽车充电功率需求的统计学建模方法[J]. 电网技术, 2010, 34(11): 126-130. Tian Liting, Shi Shuanglong, Jia Zhuo.A statistical model for charging power demand of electric vehicles[J]. Power System Technology, 2010, 34(11): 126-130. [15] 杨波, 陈卫, 文明浩, 等. 电动汽车充电站的概率负荷建模[J]. 电力系统自动化, 2014, 38(16): 67-73. Yang Bo, Chen Wei, Wen Minghao, et al.Probabilistic load modelling of electric vehicle charging stations[J]. Automation of Electric Power Systems, 2014, 38(16): 67-73. [16] 李含玉, 杜兆斌, 陈丽丹, 等. 基于出行模拟的电动汽车充电负荷预测模型及V2G 评估[J]. 电力系统自动化, 2019, 43(21): 88-96. Li Hanyu, Du Zhaobin, Chen Lidan, et al.Trip simulation based charging load forecasting model and vehicle-to-grid evaluation of electric vehicles[J]. Automation of Electric Power Systems, 2019, 43(21): 88-96. [17] 姜欣, 冯永涛, 熊虎, 等. 基于出行概率矩阵的电动汽车充电站规划[J]. 电工技术学报, 2019, 34(增刊1): 272-281. Jiang Xin, Feng Yongtao, Xiong Hu, et al.Electric vehicle charging station planning based on travel probability matrix[J]. Transactions of China Electrotechnical Society, 2019, 34(S1): 272-281. [18] 苏舒, 林湘宁, 张宏志, 等. 电动汽车充电需求时空分布动态演化模型[J]. 中国电机工程学报, 2017, 37(16): 4618-4629, 4887. Su Shu, Lin Xiangning, Zhang Hongzhi, et al.Spatial and temporal distribution model of electric vehicle charging demand[J]. Proceedings of the CSEE, 2017, 37(16): 4618-4629, 4887. [19] 周翔, 陈杰军, 谢培元, 等. 基于效用最大化原则的电动汽车充电站负荷特性分析方法[J]. 电测与仪表, 2018, 55(4): 1-8. Zhou Xiang, Chen Jiejun, Xie Peiyuan, et al.Load demand analysing method for electric vehicle charging station based on the principle of maximizing utility[J]. Electrical Measurement & Instrumentation, 2018, 55(4): 1-8. [20] Weckx S, D’Hulst R, Claessens B, et al. Multiagent charging of electric vehicles respecting distribution transformer loading and voltage limits[J]. IEEE Transactions on Smart Grid, 2014, 5(6): 2857-2867. [21] Rasouli S, Timmermans H J P. Activity-based models of travel demand: promises, progress and prospects[J]. International Journal of Urban Sciences, 2014, 18(1): 31-60. [22] Reichman S.Travel adjustments and life styles: a behavioural approach[M]. Lexington, MA: Lexington Books, 1976. [23] He Xuedong, Zhou Xunyu.Portfolio choice under cumulative prospect theory: an analytical treatment[J]. Social Science Electronic Publishing, 2011, 57(57): 315-331. [24] Kahneman D, Tversky A.Prospect theory: an analysis of decision under risk[J]. Econometrica, 1979, 47(2): 263-292. [25] Jou R C, Kitamura R, Weng M C, et al.Dynamic commuter departure time choice under uncertainty[J]. Transportation Research Part A, 2008, 42(5): 774-783. [26] Bekhor S, Ben-Akiva M E, Ramming M S. Estimating route choice models for large urban networks[C]//The 9th World Conference on Transport Research, Seoul, Korea, 2001: 23-30. [27] Zhou Chengke, Qian Kejun, Allan M, et al.Modelling of the cost of EV battery wear due to V2G application in power systems[J]. IEEE Transactions on Energy Conversion, 2011, 26(4): 1041-1050. [28] Schwanen T, Ettema D.Coping with unreliable transportation when collecting children: examining parents’ behaviour with cumulative prospect theory[J]. Transportation Research Part A, 2009, 43(5): 511-525. [29] Pietrabissa A, Suraci V.Wardrop equilibrium on time-varying graphs[J]. Automatica, 2017, 84: 159-165. [30] 武汉市统计局. 武汉统计年鉴[J]. 北京: 中国统计出版社, 2018. |
|
|
|